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ABSTRACT

The Role of Algorithmic Decision Processes in Decision Automation:

Three Case Studies

Blake E. Durtschi

Department of Computer Science

Master of Science

This thesis develops a new abstraction for solving problemsin decision automation. Deci-
sion automation is the process of creating algorithms whichuse data to make decisions without the
need for human intervention. In this abstraction, four key ideas/problems are highlighted which
must be considered when solving any decision problem. Thesefour problems are the decision
problem, the learning problem, the model reduction problem, and the verification problem. One of
the benefits of this abstraction is that a wide range of decision problems from many different areas
can be broken down into these four “key” sub-problems. By focusing on these key sub-problems
and the interactions between them, one can systematically arrive at a solution to the original prob-
lem. Three new learning platforms have been developed in theareas of portfolio optimization,
business intelligence, and automated water management in order to demonstrate how this abstrac-
tion can be applied to three different types of problems. Forthe automated water management
platform a full solution to the problem is developed using this abstraction. This yields an auto-
mated decision process which decides how much water to release from the Piute Reservoir into
the Sevier River during an irrigation season. Another motivation for developing these learning
platforms is that they can be used to introduce students of all disciplines to automated decision
making.
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Chapter 1

Introduction

Decision automation is the process of creating algorithms to automate decisions. These

decisions can range from simple logical decisions, “if X, then do Y”, to complex real valued

decisions, “based on the current state, sensory data, and likely future expectations, turn left 8.7

degrees, and slow down to 23 mph.” The goal in decision automation is to create algorithms that

can take data as input and make provably good decisions without the need for human intervention.

Although this task may seem daunting, a rigorous science hasbeen developed to address several

key issues in the leap from data to decisions.

An algorithmic decision process, (or simply, decision process), is a systematic process for

making a decision. It can be thought of as the final result of decision automation. The decision

process is designed as an algorithm that can be executed on a computer, on another device, or

manually by another human.

In this thesis, we develop a decision architecture which canbe used in decision automation.

This architecture focuses on the key issues that must be considered in order to create algorithmic

decision processes. Because it focuses on the most importantissues, this decision architecture may

be used to provide a pedagogical model that can be taught to students studying decision automation.

In addition, we have also created three learning platforms that demonstrate how this architecture

can be applied in three different decision areas: portfoliooptimization, business intelligence, and

automated water management.

The rest of this chapter continues with a section introducing this decision architecture, fol-

lowed by a section describing the motivation behind our three new learning platforms. Chapters

1
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2 through 4 describe the three decision areas and the learning platform for each. In chapter 2

we describe in greater detail how the decision architecturecan be applied to a non-traditional,

non-engineering decision area using the example of portfolio optimization. We also introduce a

portfolio optimization platform. Chapter 3 describes the business intelligence platform, the prob-

lem it is designed to help solve, and how the algorithmic decision process can be applied to help

solve that problem. Chapter 4 describes the automated water management platform, going into sig-

nificant detail on the implementation of the platform and itssolution on the Sevier River System

in central Utah. Finally, chapter 5 concludes this thesis.

1.1 A Decision Architecture

When teaching about decision processes, we focus on algorithms and the way they use and trans-

form data. To scrutinize decisions through this lens, we have borrowed four of the “great ideas”

from computer science to create a decision architecture. This architecture breaks a decision process

into modules that can be independently formulated and solved as meaningful problems. This sepa-

ration is useful in creating a pedagogical sequence where students can attack pieces of the problem

before trying to master the entire process. Although our ultimate goal is to emphasize the interre-

lationship between these stages, questions about this interrelationship can be easily motivated by

understanding the ways specific algorithms for one stage consume information and transform it to

be used by another stage of the decision process.

This decision architecture is based on the simple observation that any discussion of the

quality of a decision must involve a discussion of the consequences of various choices. We will

call the mapping of choices to consequences a model. Withouta model of the consequences of our

actions, we cannot talk meaningfully about good (or bad) decisions.

With this model-focus, we characterize the modules of making a decision as decision mak-

ing, learning, model reduction and verification. See figure 1.1. Decision making is the process

of computing decisions based on a model of the consequences of available choices, along with

an objective function that scores possible consequences tocharacterize which decisions are bet-

2
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ter than others. Learning is the use of historical observations (data) and a measure of quality to

choose a model from a class that best explains the data. Modelreduction is the process of selecting

a simplified model class from which an adequate model can be chosen. Verification then designs

the experiments that test the decision process in ways that generate new data from which a spec-

ified metric can score the performance of the design. This process and how it relates to making

decisions will be described in greater detail using portfolio optimization as an example in the next

chapter.

Figure 1.1: A decision architecture highlighting the central role of models in making decisions.
Four major themes from computer science are highlighted as the primary stages of a decision
process.

This decision architecture can be viewed as an abstraction of the field of decision automa-

tion. Many key ideas and topics in decision automation can beviewed as specific details, for-

mulations, or ideas related to one or more of these four problems. Because of the generality of

this architecture to the field of decision automation, it canbe used in solving problems in many

3
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different decision areas that may seem very different. In this thesis we will show how this decision

architecture can be used to develop algorithmic decision processes in order to solve three of these

problems.

Learning platforms have been developed in the decision areas of portfolio optimization,

business intelligence, and automated water management. Each platform focuses on a different

part of the decision architecture. The portfolio optimization platform focuses on the verification

portions of this architecture to try to verify various portfolio optimizing algorithms. The busi-

ness intelligence platform focuses on the learning portionof this architecture because it involves

students creating models for future sales of retail products. The automated water management

platform focuses on the decision making part of this architecture in deciding how much water to

release from a reservoir to downstream users.

Throughout this thesis we use the term architecture to referback to this decision architec-

ture which may be used to create algorithmic decision processes. The architecture includes the

intereaction between these four key problems in decision automation. We will use the term learn-

ing platform, or platform, to refer to any software or hardware designed to be used by students in

order to learn a specific idea. Thus the portfolio managementproblem is a problem to be solved

by using our decision architecture, and the portfolio management platform is the software used in

order to illustrate part of the decision architecture to students.

1.2 Laboratory Testbeds for Decision Automation

Learning platforms are frequently used in education in order to give students a place to experiment

with concepts that can be more difficult to learn in a traditional discussion setting. Being able to

“try it and see” allows students the opportunity to solve problems and then verify the quality of

their solutions. Platforms also play a role in motivating the student, by making learning fun.

There has been much research devoted to designing and using learning platforms for edu-

cation in algorithmic decision processes. Some of the most common learning platforms currently

used come from the controls community and include the following: inverted pendula [30, 11],

4
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ball and beam systems [12], robotic arms [3], and other mechanical devices. A growing interest in

multi-agent systems has likewise motivated team systems such as robot soccer [10] and other “bot”

systems [1] that can execute various cooperation strategies to orchestrate efforts to accomplish a

common goal. These systems can be powerful platforms for students to solidify their understand-

ing of decision processes.

One drawback to common decision making platforms is that they require the students to

have a mastery of concepts from physics, math, and engineering before they can explore the im-

portant problems in algorithmic decision processes. Because of this, students typically are not

introduced to systems theory or decision algorithms beforetheir junior or senior year. Another

problem is that systems theory is usually only being taught to engineers while students from a

wide range of technical areas could benefit from principles of systems theory.

Our view is that the central ideas from systems theory and algorithmic decision processes

should be introduced to students much earlier in their education. This view is motivated by our

observation that algorithm design aids any decision makingprocess, thereby playing a foundational

role in a broad range of applications and fields. Thus, students of all disciplines could benefit

from an introduction or overview of algorithmic decision processes. Also, with earlier exposure,

students will be able to decide sooner if they like the study of algorithmic decision processes and

get a jump start on preparing for the rigors of the field.

To accomplish this, we suggest introducing various learning platforms in areas accessible

to younger students. The goal is to simplify the context for discussing central issues in systems

theory and algorithm design, providing jumping off points for students to appreciate and explore

the depths of the field. Our point of view is that computer science is fundamentally about solving

problems using computers. In the context of decision-making, this suggests making provably good

decisions in the face of uncertainty and complexity constraints. The central problems associated

with this algorithmic approach to decision-making are 1) the decision problem, 2) the learning

problem, 3) the model reduction problem, and 4) the verification problem.

5
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Another common trend in the teaching of decision processes is to use virtual platforms in

order to simulate designs for decision algorithms. Koretsky et. al. at Oregon State University have

been using a virtual laboratory of a simulated chemical vapor deposition process in their program

and have shown it to be effective in teaching control theory.They report that students felt that it

was the most effective learning medium used, even above physical laboratories [15].

All of our platforms described in this thesis contain both virtual and physical components.

The portfolio optimization platform uses real stock data tocreate a virtual trading platform with

the ability to add virtual dynamics. The business intelligence platform uses actual product sales

data to drive a demand forecasting platform. The water management platform is built upon a real

reservoir release gate and uses software to model a physicalriver and implement algorithms to

control the gate. The virtual component makes each platformeasily accessible to many students

who can design their own algorithms in software, while the physical component of each platform

makes the decision algorithm yield real world solutions that matter to real people. We believe that

these real world applications tend to create a learning culture in which the student feels their work

is important and motivates him/her to learn more in order to come up with better solutions.

While the primary use of these learning platforms is to introduce and demonstrate our deci-

sion architecture, we believe they can also serve to help students of all diciplines learn more about

decision automation. During this thesis as we introduce anddescribe these platforms we will also

emphasize how these platforms could be used by students in learning this decision architecture.

6
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Chapter 2

Portfolio Optimization

The portfolio optimization platform is a stock trading platform where students can create

trading algorithms which decide which stocks to buy and sell. Virtual cash is given to each algo-

rithm or “automated agent”, which then uses that cash to create a portfolio of assets. Live stock

data is fed into the system which adjusts the values of each agent’s portfolio accordingly. Our

contribution, and the focus of this chapter is to explain theproblem that is to be solved by students

wishing to use this platform and how coming up with an algorithmic decision process for this

problem leads students to ask, and answer, important questions in the field of computer science.

While doing so, we will show that relatively simple solutionsto this problem can be understood

by younger students, while at the same time introduce them tocomplex and interesting topics cur-

rently being researched. This can motivate students early in the program to desire to continue in

the field.

In the following sections we introduce and formulate the portfolio management problem.

Then we discuss each piece of our decision framework and showhow a student may formulate

each problem as it applies to portfolio optimization. We start with the control or decision problem

and formulate that. Then we formulate the learning problem.We discuss how uncertainty in the

learning problem affects the approach that should be used for the control problem. Then we for-

mulate the model reduction problem and discuss the verification problem introducing our learning

platform as a verification technique for portfolio optimization

7
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2.1 Portfolio Management

The question of portfolio management deals with choosing how to allocate money into different

securities with the objective to maximize total wealth at some future time. We have chosen portfo-

lio management as a learning platform because it is conceptually simple and because the objective

is clearly parameterized in terms of equity returns. In thisway, all questions of information and

uncertainty can be posed in terms of what is known about the equity returns. This characteriza-

tion allows us to reconsider the decision problem repeatedly as we peel back different layers of

information and study the impact of uncertainty on our problem.

Moreover, since this problem is open loop, in that investment decisions do not affect future

equity returns of the assets (for typical investors), key concepts from systems theory can be intro-

duced without the complexity of feedback interactions. Thehope is that students will be motivated

to engage the rigors of the discipline necessary to master feedback control if they first appreciate

some of the central problems arising from the interaction ofuncertainty and complexity in decision

problems. Next we describe the portfolio management problem.

Suppose an investor has a choice between holding his money ina risk free cash account

with a fixed, positive rate of return, or purchasing any ofn−1 securities having varying (positive

and negative) rates of return. Any of these securities may bepurchased at any time, and all that is

known about them is their historical price over a finite period of time, pi(t), i = 1, . . . ,n. The goal

is to make as much money as possible at time T, by purchasing shares in these securities with a

fixed initial investment. The following definitions will help make this objective precise.

A portfolio is a distribution of wealth invested in these assets, characterized by

(s1(t), . . . ,sn(t)), wheresi(t) is the number of shares of securityi owned at timet. We denote

the value of the shares of securityi owned at timet by xi(t) = pi(t)si(t). The value of a portfolio

at any particular time is the sum of the value of the securities, x1(t) + . . .+ xn(t). We let x1(t)

correspond to the value of the risk free cash account. The total return of a security is the price

change ratio of the security, given byr i(t) =
pi(t)

pi(t−1) . This quantity characterizes how the value of a

fixed number of shares changes over time. The resulting dynamics of the value of a portfolio over

8
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time are given by
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Nevertheless, the investor does not have to keep a fixed number of shares in each security.

Instead, he can change the distribution of wealth between the securities at each time step. This

decision is represented by a set of numbers,ui, i = 1, . . . ,n−1 that indicates the dollar amount that

the investor wishes to be moved from the cash account to theith risky asset. A negative value of

ui represents a dollar amount to be moved from theith risky asset to the cash account. We will

assume for ease of exposition that there are no transaction costs, although all of the ideas discussed

here can be easily extended to include them. The portfolio dynamics incorporating this investor

decision then become:

x(t +1) = R(t +1)x(t)+R(t +1)Bu(t) (2.2)

wherex(t)≥ 0 ∀t, R(t +1) = diag(r1(t +1), . . . , rn(t +1)),
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The dynamics in (2.2) describe how the value of a portfolio changes as a function of the

investor’s reallocation decisions,u(k). In this expression, the return matrix,R(t+1), represents the

future impact of an external variable over which the investor has nocontrol, while the input,u(t),

represents the change in the portfolio distribution over which the investor has complete control.

Note that the positivity constraints onx restrict admissible decisionsu, allowing the purchase of

9
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securities only if you have the money to pay for them. This simple context then motivates a very

basic decision problem.

2.2 The Decision Problem

The decision, or control problem is to decide which input best improves the performance of the

system being controlled. In order to discuss making good decisions we must know the conse-

quences of our decisions and we must have an objective function which ranks the consequences

by what is most desirable. Optimal decision making therefore is simply computing the choice

with the “best” consequence as defined by the objective function. With perfect information about

the consequences of our decisions, the control problem becomes a search over possible choices to

select the one that best supports the objective. For in-depth information on control see [8].

The control problem naturally surfaces in any discussion ofportfolio optimization when

we consider the decision to be made by the investor. At some initial time, t = 0, the investor has an

initial amount of cash on hand and no money invested in other securities. Thus his initial portfolio

is x(0) =

[

x1(0) 0 . . . 0

]T

. The investor’s objective is to allocate his money into different

securities at each time step in order to maximize at some future time,T, the total value of the

portfolio, ‖x(T)‖1 = x1(T)+ . . .+xn(T). Stated formally,

max
ui(1,...,T)

‖x(T)‖1

subject to x(t +1) = R(t +1)x(t)+R(t +1)Bu(t)

x(0) =

[

x1(0) 0 . . . 0

]′

x(t) ≥ 0 ∀t.

(2.3)

A student may easily discover that iteratively solving thisproblem for one time step will

yield an optimal solution to the problem for multiple steps.This is because the decision for each

step is independent of the distribution chosen in the previous time step. A suboptimal choice from

one time step cannot lead to a better result in the second timestep. This allows the student to

10
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reduce the problem to a sequence of one step problems. Note that this would not be true when

considering the case where there are transaction costs.

Example 1 (Perfect Knowledge of Consequences)Consider the problem where ri(t), i = 1, . . . ,n

and t∈ [0,T] is given. This problem corresponds to the situation where an investor has perfect

knowledge of the future returns. To maximize the value of the portfolio one needs to move all of

the money to the security with the highest return at each time step.

Suppose we can invest in two different securities or keep our money in a cash account. We

will start out with $100 and let x1 be the amount of money kept in the cash account and x2 and

x3 be the amount of money invested in the risky securities. Figure 2.1a shows the value of the two

securities over a 110 day period. Figure 2.1b shows the composition of the optimal portfolio over

time as it switches all of the money between the three funds.

Having perfect knowledge about the future resulted in a simplification of this otherwise

complex decision problem. This simplification can lead students to consider important questions

about decision making. For example, can you characterize the nature of optimal solutions to make

their computation tractable? In other words does the optimal design have an analytic solution?

How does computational complexity change when consideringa sequential decision process where

making choices that appear suboptimal now may result in a higher future payoff? For example,

sacrificing a piece in chess to obtain a better board position.

Until now we have assumed perfect knowledge of the future. When we do not have perfect

information about the consequences of our actions, we need to estimate a best guess of what the

consequences may be in order to make decisions consistent with our objective. A model represents

everything we understand about the mapping between choicesand consequences. To determine a

model for future consequences, students must solve the learning problem.
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Figure 2.1: Prices of two different securities shown above.Assuming perfect knowledge of the
future, the optimal policy switches all the money to the security with the highest return at any
given time.
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2.3 The Learning Problem

Formulating a learning, or system identification problem implicitly assumes that something about

the mapping of decisions to consequences remains constant over time. Certainly if the relationship

from choices to consequences is changing sporadically overtime, there is no justification for using

historical observations of the system to predict future behavior. This constancy between decisions

and consequences is captured by the choice of model class. The knowledge we have about the

true system’s behavior is acquired by running experiments that collect input-output data. We use a

quality metric to evaluate each model in the class based on this data.

Given a class of models, input-output data, and a quality metric, the system identification

problem is to select the model from the class which best describes the observed input-output data

according to the quality metric, see [18]

2.3.1 Sources of Uncertainty

Once a model is selected it becomes the basis for predicting consequences of various decisions.

Inaccuracies in the predictions of this chosen model can come from insufficient data, the model

class, or the quality metric. These sources of uncertainty are easily seen in portfolio management.

Uncertainty from Insufficient Data

Example 2 (Uncertainty from Insufficient Data)Suppose we have a risky security. We no longer

assume that we have perfect knowledge about the future returnsbut that they are a stochastic

process of independent identically distributed random variables. We select our model class to be

the class of Gaussian distributions which are parameterizedby their mean and variance. Our

system identification algorithm is to choose the model whose mean and variance most closely

match the sample mean and variance of the historical data.

Suppose the past returns from a risky security are truly generated from a Gaussian distribu-

tion with mean, 1.10, and variance, 0.10. By taking historical data as our sample we can compute
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Table 2.1: Estimates of the mean and variance of a distribution when taken from finite sample sizes
are not always accurate.

Actual Estimated
sample size 5 15 50 100 1000

mean 1.1 1.155 .989 1.134 1.122 1.088
variance .1 .040 .148 .143 .109 .102

an estimated mean and variance. As shown in Table 2.1, the estimated mean and variance change

depending on how large a sample we use.

This example shows that with finite input-output data the learned model will be different

from the true system, which introduces uncertainty into ourpredictions. As the available historical

data increases, the sample mean and variance, and thus the selected model, converge to the same

as the true system. This consistency is an indicator of a goodsystem identification or learning

algorithm.

Uncertainty Intrinsic to the Model Precision

Considering the previous example, suppose we had enough datathat our system identification

algorithm could select the correct model from the model class. From table 2.1 we would select a

model with mean 1.1, and variance, 0.1. If we were to use this model, would our predictions of

future returns necessarily be accurate? In this case, predictions of future returns are the mean of

the Gaussian model chosen as most descriptive of the historical data. The next data point is not

likely to be 1.1, but instead could be anything, say 1.195.

The model class chosen emphasizes a level of uncertainty in these predictions, character-

ized by the variance of the Gaussian distribution. We can expect our predictions to be accurate,

on average, but within a range specified by the variance of ourmodel. Thus, our particular choice

of model class builds in an estimate of the level of precisionof our predictions, and this precision

defines uncertainty intrinsic to our particular model.
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Uncertainty Due to Inaccurate Choice of Model Class

Another source of uncertainty is in the selection of the model class itself. While we may choose

to represent returns as a Gaussian random variable, it may, in fact, be generated by a completely

different process for which a Gaussian process is only an approximation.

Uncertainty Due to the Quality Metric

Suppose we have enough data such that our sample mean is 1.1, but we change our quality metric

to choose the model which more heavily weighs the most recentweek’s data. The model selected

will not be the same as the actual distribution mean, as our choice of metric reveals our assumptions

about the predictive value of the model. Likewise, one may compute a “best fit” between model

predictions and data using different norms, and the minimizer in each case may be an entirely

different model from the chosen model class.

Frequently the choice of metric is used to guard against uncertainty in the choice of model

class. This is accomplished, for example, by ranking each model in the class by the likelihood that

it generated the observed data, and then choosing the model that maximizes this likelihood.

Consideration of these uncertainties in modeling leads students to a variety of important

questions. How should one characterize uncertainty in a model, and how should this characteriza-

tion change the control problem formulation? How does one design tests that check whether the

underlying assumptions justifying a particular choice of model class, metric, etc. are still consistent

with the observed data?

2.3.2 Uncertainty’s Effect on the System Identification and Control Problems

Until now we have discussed the control problem and the system identification problem separately.

Because of uncertainty, it is interesting to consider how these problems affect one another. Given a

predictive model, when does it make sense to treat its predictions as the true future, leaving the for-

mulation of the control problem unchanged? When does it make sense to modify the formulation

of the control problem to account for the fact that our estimates of the consequences of various de-
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cisions are based on a model, not perfect knowledge? Likewise, should knowing that our choice of

a model will be used as the basis for decision making alter thenature of the identification problem?

If so, how?

One approach to resolving these issues suggests that both the system identification and

control problems should be modified to account for their impact on each other. For example,

some control-oriented system identification modifies system identification techniques to be com-

patible with robust control methodologies [5]. Likewise, robust control can be viewed naturally

as identification-oriented control because it modifies classical control techniques to account for

explicit uncertainty in the learned model. In the portfoliomanagement example, these issues arise

naturally as the objective function in the control problem is modified to account for uncertainty

in the predictions based on the identified model. The degree to which the objective function is

modified to account for this uncertainty can be scaled by a risk aversion parameter, facilitating an

entire class of control problems depending on the degree oneis willing to believe the predictions

of the identified model.

Example 3 (Control Problem Accounting for Model Uncertainty)Now we assume that we have

uncertain predictions of future returns and show how the decision problem is different from the

decision problem with perfect knowledge of the future. We let Jbe our one step decision problem

without uncertainty and then consider how uncertainty in thereturns affects the solution. R(t +1)

and B are defined in equation (2.2).

J = max
ui(1,...,T)

‖x(t +1)‖1

subject to x(t +1) = R(t +1)x(t)+R(t +1)Bu(t)

x(t) ≥ 0 ∀t

(2.4)

This optimization requires predictions for the future returns, ri(t +1), i = 1, . . . ,n (used in

R(t +1)). Assuming that we solve an identification problem to find a Gaussian distribution that

best explains the observed data, then we could use the mean foreach security as the predicted
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return for that security. However, this would be equivalent toassuming that our identified model

is perfectly accurate.

One way to formulate the control problem that accounts for ouruncertainty in the predic-

tions of our model is to say that each predicted returnr̂ i is never more thanε away from the actual

return, |r̂ i − r i | ≤ εi. This gives us a range of possible values for J∈ [Jlo,Jhi]. Now we need to re-

think our objective function based on the ranges of J for eachpossible combination of ui ’s. We can

think of protecting against the worst case by maximizing the minimum value of J. We could also

maximize the maximum, the median, or some other value of J; we could minimize the difference

Jhi − Jlo, etc. In each of these situations, considering the sense in which the resulting investment

strategy is “best” encourages students to think deeply about the interaction between identification

and control.

Another way to formulate the control problem to account for uncertainty in the identified

model is to modify the objective to not only maximize predicted returns, but also to minimize the

uncertainty intrinsic to these predictions. This is easilyaccomplished in the case where we model

returns as Gaussian random processes. The error in our predicted returns,|r̂ i − r i |, is normally

distributed, N(0,σi). This causes J, defined in (2.4), to be normally distributed with mean,µJ, and

standard deviation,σJ, taken from the covariance of the individual returns. Our objective is then

max
u1(t),...,un−1(t)

µJ−λσ2
J . (2.5)

whereλ is a user defined risk aversion parameter which can be adjustedto accomodate more or

less risk. If lambda is low then the optimization will select the portfolio based on the best return

regardless of the uncertainty. Ifλ is high then portfolios which have high variance, or risk, willnot

be selected. This problem is the celebrated Markowitz model,which is commonly used in portfolio

optimization [19] [21].

Example 4 (Mean Absolute Deviation Model)Yet another approach may discount for uncertainty

differently, by only considering the down-side risk of a particular investment. One way of doing this
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would be to letµJ be the expected value of J based on the expected returnsr̂ i, and a fixed portfolio

specified by u(t). Then for each previous time, k= 1, . . . ,K, we compute y(k) = µJ −J(k), where

J(k) is how well our same portfolio would have performed at time k. y(k) gives us a measure for

how much our portfolio would have underperformed our expectation in the past. We then let our

uncertainty be the average of the y(k)’s for all k. Once again usingλ as a risk aversion parameter

gives us,

max
u1,...,un−1

µJ−λ
1
K

K

∑
k=1

y(k), (2.6)

which essentially yields the Mean Absolute Deviation (MAD) portfolio optimization model [14].
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Figure 2.2: Using a system identification algorithm to predict future values with uncertainty, yields
an optimal risk/reward portfolio that is diversified. These25 days correspond to the last 25 days
from Figure 2.1.

Using the same three securities that we had in Example 1, but now with uncertainty, Figure

2.2 shows an optimal policy that allows a limited amount of risk. Unlike in Figure 2.1 when we

had perfect knowledge of the future, this portfolio isdiversified, splitting money between multiple

18



www.manaraa.com

securities to reduce risk. The return from Figure 2.2 is about 15% compared to about 50% in the

optimal portfolio over the same time.
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Figure 2.3: The cost of uncertainty compared to the optimal strategy. The dotted lines represent
portfolios with different risk tolerances. Because of uncertainty in the future returns, portfolios
with lower risk tolerance had to diversify more. Given that the predictions were correct, diversifi-
cation lowers the optimal performance. In other words robustness incurs a performance cost.

It is also interesting to consider how uncertainty affects the possible solution. For example,

suppose that we have an identification algorithm with uncertain predictions that happens to predict

the returns exactly. Since we do not know ahead of time that they will be exact predictions, the

risk/reward decision strategy will diversify the portfolio more or less depending on the uncertainty

in the predictions. Figure 2.3 shows the loss in returns due to this diversification. By limiting the

incurred risk of a portfolio, the maximum potential is lowered as well. Viewing diversification as

a way to overcome uncertainty makes portfolio optimizationan interesting platform for studying

control.
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2.4 The Model Reduction Problem

Until now we have assumed that the true system was contained in the model class chosen for

system identification. There are however, many problems associated with this assumption. First,

it is almost impossible to validate. At most one can only showthat the selected model is not

invalidated by the data from the true system. Second, modelswhich can actually describe the true

system are usually too complex to be efficiently identified orused in computing decisions. Third,

complex models may require more data than is available in order to be identified. That is, they

may be characterized by a large number of parameters, which demand a lot of data to estimate.

The model reduction problem centers around reducing complexity while retaining as much

accuracy as possible. The problem states that given a complex system,G, find a simpler system

from a class of simple systems,Ĝ, such that the difference between them is minimized in some

norm.

inf
Ĝ∈Ĝ

∥

∥G− Ĝ
∥

∥

n (2.7)

See [8] for more discussion on Model Reduction.

Another way to reduce complexity is to lower computational complexity by decreasing the

size of the control and system identification problems. An example of this for portfolio manage-

ment is to limit the number of stocks being considered. This will avoid introducing the uncertainty

that comes from simplifying the model class, however, it maylead to decreased performance be-

cause some of the previous options will no longer be available for the decision algorithm. The next

example shows many ways of how approximation may be done by students for portfolio optimiza-

tion.

Example 5 (Reducing Complexity in Portfolio Choice)Continuing previous examples where we

have a simple model for future returns, the Markowitz formulation (2.5) for the control problem

must compute the covariance of each possible portfolio. This requires a quadratic program to solve

the optimization, which is NP-hard. Thus, the solution can notbe solved quickly for a large number

of securities. The literature is rich with methods for approximating the Markowitz portfolio [25],
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Figure 2.4: An experiment of the performance of the MAD modelon progressively limited subsets
of stocks. Students must answer the question, how does limiting the number of stocks affect the
performance of the decision algorithm? The downward trend reflects the bear market that has been
prevalent over the past year.

[26]. One might also consider simplifying the problem by using an alternative formulation such

as the MAD model which can be computed with a linear, instead of aquadratic program. Linear

programs can be solved in polynomial time.

Another alternative for reducing complexity is to limit thenumber of securities available for

selection. One might take the top n performers over the last period of time, or the lowest valued

in the Dow Jones Industrial Average, etc. In our example, we limit the number of stocks under

consideration from a progressively smaller subset of securities in the American Stock Exchange.

Figure 2.4 shows how the value of a MAD portfolio is affected when choosing subsets of securities

of different sizes. In particular, we see that it is non trivial to restrict stocks to a subset while

maintaining the best possible performance for a problem of the specified size or complexity.
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The portfolio optimization problem introduces students toconsider some important ques-

tions in approximation. For example, what approximations can be made that keep solutions close

to non-approximated optimal solutions? How does limiting the number of securities affect the

computational complexity as well as the performance of the decision algorithm?

2.5 The Verification Problem

Once the solution to a control problem has been formulated and has been approximated where

necessary to ensure that a solution can actually be computed, some very important questions re-

main. How do we know that the approximated model is still precise? How do we know that the

control solution works as desired? How do we convince non-technical people that our methods are

sound? These questions motivate the final major problem in control that our platform introduces

to students.

The verification stage monitors the performance of a complete solution, including the con-

trol, identification, and reduction steps. We call such a complete solution analgorithmic decision

process. Verification determines whether we observe any new evidence that the assumptions justi-

fying many of the choices made in the design of the algorithmic decision process have been vio-

lated, thereby motivating a redesign of the solution. Note that we can never prove that a particular

design will always work, we simply look for evidence that it begins to fail [24].

Over time verification has become an increasingly importantfield of research. As con-

trollers are implemented in software and hardware it becomes imperative to verify that these con-

trollers will work as designed. In designing system-on-chip solutions, for example, 70% of the

effort is spent on verification [27]. Because of this great effort required, verification should be

considered early-on in the design of solutions to the control, system identification, and model

reduction problems.

Example 6 (Verifying a Solution for Portfolio Optimization)In the portfolio optimization problem

we want to use verification to determine whether our decision process is able to select portfolios
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that are better than the competition. One first attempt can beto run on past data to determine

whether the algorithm performs above a specified benchmark.

In addition to verification with past data, running algorithms against others provides a

useful means of verification. Many virtual fund management systems have a way to compare

algorithms against each other in hopes of determining which is better. Brigham Young University’s

Tour de Finance (see figure 2.5) is a platform that allows for student-defined competition dynamics

as a particular verification method [6].

As students go through the control design process, the Tour de Finance platform gives them

a fun competition which will also serve as a verification mechanism. Students can create leagues

where algorithms can compete against each other. By seeing which algorithm performs better over

time, they can determine which algorithm is better.

2.6 Platform Description

The platform itself consists of two parts. The first part is anonline stock trading platform. The

second part is a library of functions that an automated agentcan use in order to interact with the

platform. Students create automated algorithms which decide which stocks to purchase in order to

maximize total portfolio value. The platform gives each agent $100,000 in virtual money and each

agent decides which stocks to purchase. In order to completea transaction the agent calls an API in

the platform library which describes how many shares to buy or sell. The platform receives current

stock prices from finance.yahoo.com and uses that data to adjust the portfolio value of each agent.

The platform graphs each agent’s portfolio value over time and students can see which agent is

performing better.

There are several things that separate this platform from other virtual fund trading plat-

forms. First it has an interface for automated agents. This encourages students to really try to

quantify a superior trading algorithm based on data rather than just picking stocks manually. Sec-

ond, the platform is designed to use competition dynamics indetermining the value of a portfolio
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Figure 2.5: Screenshot from the Tour de Finance, a virtual trading platform for portfolio optimiza-
tion. Shows several competing algorithms from the same MAD model for portfolio optimization
but with differing risk aversion parameters, and hence, differing levels of diversification.

instead of just the value of the stocks. The platform will redistribute wealth according to the com-

parative performance between the agents. So if one agent is making money but it makes less than

the other agents the platform will take some money from that agent and give it to the other, better-

performing agents. This mimics the market share of a large trading firm which under-performs

compared with other firms. The firm will lose investors who then invest their money in those other

firms. See [6] for a better description on how this works as well as the motivation behind this

design. Third, the platform allows for different groups to be created and each group can be set

up with different dynamic and rules such as trading costs, etc. These groups can be created by

students in order to study different dynamics, and investment strategies.

2.7 Conclusions

We have introduced portfolio management as a learning platform designed to teach students about

the decision making process and introduce them to importantcontrols problems earlier in their

education. We walked through the example of portfolio management, showing how questions en-

countered by trying to select an optimal portfolio led to deep questions in the problems of control,
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system identification, model reduction, and verification. Moreover, classic results in finance such

as the Markowitz model lead to exploring the interaction among these problems.
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Chapter 3

Business Intelligence

Just like portfolio optimization, business intelligence is a great problem domain for study-

ing algorithmic decision processes. Business leaders are incharge of making decisions every day.

One important type of decision that retail business leadersmust make is to set the price at which to

sell each product. Retail managers must make a trade off between profit margins on each sale and

quantity sold. As the price of an item increases the retail store makes more profit, but the number

sold will be less. As the price of an item is lower, more items will be sold, but there will be less

profit earned on each one.

In this chapter we describe how the decision architecture formulated at the beginning of

this paper can be applied to this business intelligence problem. Unlike the previous chapter on

portfolio optimization where we described in detail on how astudent would step through the deci-

sion architecture to solve the problem, we will only go through the decision architecture enough to

show that this problem can be approached by students in the same way. Then, we will describe the

business intelligence platform that we have built in collaboration with the BYU Bookstore. This

platform currently uses live bookstore sales data to address the learning stage of the process by

developing models of product demand.

3.1 Applying the Decision Architecture to Business Intelligence

In this section we will describe how the decision framework developed in chapter 1 can be applied

to the business intelligence problem where a manager must decide the selling price for each product
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in order to maximize profit. Just as in the portfolio optimization problem, the business intelligence

problem can be broken down into four interconnected sub-problems.

3.1.1 Decision Problem

To describe the decision problem formally we will suppose that a retail store has a predetermined

list of n products for sale. Let vectorp describe the sale prices of these products wherepi , i =

1, . . . ,n is the price of producti. We will let qi = di(p), i = 1, . . . ,n denote the quantity of producti

sold per unit time at given prices,p, wheredi(p) is some function of prices (and is often called the

demand function). The revenue generated from selling a product, i, is given byr i = pi ∗qi , which

is the sale price multiplied by the quantity sold.

We let ci be the marginal cost to the retail store for making a unit of product i available.

For simplicity we let this be the cost of purchasing the product from the supplier. It could also be

expanded to include the cost of storing the product in inventory, shipping costs, or worker’s salary

associated with this product. We define expenditures,e, as the cost of an item multiplied by the

quantity sold,ei = ci ∗qi . We use the quantity sold and not the number of items purchased from the

supplier because until the items are sold they are still maintained in inventory and so their value is

still owned by the retailer.

The goal of the retail manager is to maximize profit, where profit is defined as revenue

minus expenditures. Profit is given by,P= (p−c)q, and the decision is given in (3.1). The quantity

sold is determined byD(p), whereD is a mapping fromRn+ 7→ R
n+ and can be a combination of

eachdi(p).

max
p

(p−c)∗q

subject to q = D(p)

p(i) ≥ 0 i = 1, . . . ,n

(3.1)
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3.1.2 Learning Problem

In order to solve this decision problem we must answer how different choices ofp affect the

quantity sold. In order to do this we must determine a model for how consumers decide to purchase

a product. In retail the relationship between price and quantity sold is commonly called a demand

function because often it is represented by a function. In reality this could be any relationship and

include dynamics. Predicting this relationship is called demand forecasting.

The first step to modeling a demand function is to select a model class for demand. This

model class can be as simple as a linear static function or include dynamic systems with memory

of past prices. Modeling demand could also contain parts (functions, or dynamic systems) which

are affected by other things beside price such as, the day of week, time of year, etc. These things

can be taken in consideration in the selection of a model class.

Once the model class is chosen, historical data can be used todetermine the parameters

of a specific model in the class which best explains the historical data. These parameters will be

coefficients to the demand function or the dynamic equations. In order for parameter estimation

to be done well, it is important to use data which captures theimportant features you need. For

example, to learn how demand changes as price changes, salesdata is needed for different prices.

Similarly, data only from summer months cannot be used to learn how demand changes based on

the time of the year. The data must be informative over the desired range of prediction.

In the simplest case quantity can be unaffected by the price.We may choose a model that

the quantity sold on a particular day will be the average of the daily sales over the past two weeks

no matter how the price has changed. This is commonly known asa moving average demand

forecasting model.

Demand could instead be a static function of the price. In this case the price will affect

what the demand will be, and that affect will be determined bythe function specified. This is the

framework looked at by many economists and retail managers.This framework has a rich theory

built around it, with standardly accepted functions and ways to come up with those functions.
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Finally, demand could be a dynamic system with memory using price as an input. Not only

does the price affect what the demand will be but also what theprice has been in the past. This

method for modeling demand is a current area of research and is appealing because it can capture

a difference between increasing a products price tox, and decreasing the price tox. It also can

explain consumer behavioral effects, such as waiting for things to go on sale because they have

been seen on sale before. The business intelligence platform design can fully support each of these

modeling paradigms.

3.1.3 Model Reduction Problem

Regardless of which model class is chosen for the demand function, it may be necessary to reduce

the model class in order to make the computation feasible. For example, there may be so many

different products for sale that it may be unreasonable to allow the demand of one product to

be affected by all of the other products, because the number of parameters may be too many to

esimate.

Example 7 (Too Many Parameters in Demand Forecasting)Suppose a store sells 10 different prod-

ucts, and the manager is trying to model how the sales of each product depend on the prices of

all of the different products. Using a linear demand function there will be 10 parameters for how

each product affects the sales of product 1. For product 2 there are 10 more parameters, and so on.

There are 100 parameters in all which must be learned requiring a lot of data. Now imagine a more

realistic scenario of a store with thousands of products. This would be millions of parameters.

From this example we can see that even for simple models the number of parameters may

be too large to estimate. Even if the computation was tractable the data that would be needed to

estimate all those parameters would not be readily available. In situations such as this, algorithms

can be developed which can select subsets of related products. One could use the data to determine

which products were bought together often, or never at all, to determine which products comple-

ment each other or are substitutes for each other. These may be good candidates for deciding which
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product’s price should affect another product’s price. This could eliminate several variables and

limit the number of parameters to be learned to a few parameters per product.

3.1.4 Verification Problem

The verification problem is to verify the algorithmic decision process created in the first three

steps. To verify the solution to the decision problem of thisbusiness intelligence problem we need

to verify whether the prices selected actually do maximize profit.

We can also formulate a verification problem on the model chosen in the learning problem.

In this case the learning problem resulted in a demand function (or system) which relates the price

selected with the quantity sold. The verification problem with respect to demand forecasting is to

verify whether there is evidence in the data to suggest that the forecasts from the algorithms are

incorrect. The standard way that this is done is to test the algorithm on some novel data set that

was not used in learning algorithm parameters.

One of the main benefits of the business intelligence platform is that students have a mech-

anism for verifying whether the data suggests that their algorithm predicts well or not. By adding

their algorithm to the platform they will be able to compare its predictions with the actual sales

data to determine how well their algorithm performs. They will also be able to compare the per-

formance of several algorithms to determine their relativeperformance.

3.2 Platform Details

The business intelligence platform is a platform which stores and displays BYU Bookstore sales

data, and provides a mechanism for students to develop and study demand forecasting algorithms.

Using this platform students are able to write algorithms that predict future sales of products and

see how well their predictions work on real data. There are four major pieces which make up the

platform. Figure 3.1 shows how these four pieces work together.
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3.2.1 Sales Database

With our collaboration with the BYU Bookstore we have had access to their sales data for the past

four years. This includes several hundred thousand products, and thousands of transactions per

day. At regular intervals the Bookstore sends data files containing the data for every item that is

scanned for sale, including price, item number, quantity sold, time, register, etc. Currently this

occurs approximately once a week.

The data being received from the bookstore is parsed by automated scripts and is stored

in a MYSQL database on our servers. Several preliminary calculations are made on this data

including how many of each product were sold in a day, week, ormonth. Each of these preliminary

calculations is stored in a separate table to speed data access. This data is then made available to

be viewed on the platform or used by students to design demandforecasting algorithms.

Figure 3.1: Architecture of the platform with inputs from the BYU bookstore in form of sales data
and students inputting learning algorithms.

3.2.2 Algorithms

The platform consists of several common demand forecastingalgorithms similar to those that can

be found in any introductory course in demand forecasting. They include the moving average, ex-

ponential moving average, and Holt-Winter’s algorithms. Students can learn about these demand
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forecasting algorithms and see what makes them effective orineffective by comparing their per-

formance on any of the bookstore products. After learning what has already been done, they can

then design their own algorithms.

The algorithms that the students write must be written in Matlab and follow a standard

Matlab API shown below in figure 3.2.

result = algorithmName(data, prices, processTime, forecastHorizon,
parameters)

data: a time series array of sales data for a product where each
element of the array is the number of items sold for that
time period.

prices: an array the same length as data with each element
representing the price of the item during that time period.

processTime: the amount of data that the algorithm has in order to
produce its first forecast.

forecastHorizon: how many periods of forecast ahead of the last
data point are desired by the caller.

parameters: any other parameters needed by the algorithm.
(examples include weighting factors, etc. that cause the
algorithm to return different results)

result: a time series array of length
data-processTime+forecastHorizon where each element, $i$,
contains the forecast for the data point in data[i+processTime].
The algorithm should only use data from before that data point.

Figure 3.2: This is the API for a user defined demand forecasting function. Following this API
ensures that the platform can call the function, passing theneeded information, and get the results
in a uniform manner.

Once a new algorithm is designed, students can then upload itinto an algorithm database.

The database keeps track of algorithm properties such as theminimum amount of data required to

produce a forecast, the display name, the Matlab script name, optional parameters, and everything

the platform needs to know in order to run the algorithm. Oncean algorithm is loaded into the

database it automatically becomes part of the platform. Theuploaded algorithm is added to the
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user interface as a possible algorithm to be selected and is able to be run by the platform on

bookstore data if selected.

3.2.3 Forecasting Engine

The forecasting engine executes demand forecasting algorithms at run time after the user decides

which algorithms to run. This can take some time when multiple algorithms are selected, which

can be a problem, but takes just a few seconds when only a couple of algorithms are chosen. The

reasoning for executing the algorithms at run time is because of the large amounts of time and

space that would be needed to run each algorithm on each product and store the results. We do

not expect excessive amounts of traffic on all products so it does not make sense to make and

store all of the pre-calculations. Another benefit to running the algorithms at run time is that the

performance of an algorithm can be seen minutes after data isuploaded instead of the next day.

One thing that could affect the performance of the platform is if future algorithms are

designed which take a long time to run. For these algorithms the run-time execution might take

so much time that waiting is not desirable. The platform can be updated later to incorporate some

pre-proccesing for certain algorithms, and/or products. These possibilities need to be analyzed

based on the usage of the platform which will be better known at a later time.

3.2.4 User Interface

The graphical user interface (GUI) consists of a website written in PHP called the retail labora-

tory, www.idealabs.byu.edu/store/retailLab.php. It allows a student to select any product from the

bookstore, and see daily sales of that product for the most recent month of data. Figure 3.3 shows

the platform after a student has selected a product via the menu on the right. The graph on the top

shows how many sales there were each day and the graph on the bottom shows what the price was

for each corresponding day.

On the right side of the GUI is a menu of all of the algorithms existing in the platform.

These algorithms are taken from the algorithms database fordisplay in this menu. The user may
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Figure 3.3: The user interface of the platform after a product has been selected. A product may
be selected on the products menu to the right. First the user selects a department number, then a
desired product from the list.

34



www.manaraa.com

select any number of demand forecasting algorithms to be runon the current selected product and

click a submit button. This causes the algorithms to be run onthe appropriate data and a graph

to be displayed for each algorithm. The algorithm graph shows for each day what the predicted

number of sales would have been using that algorithm on only data from before that day. Figure 3.4

shows the platform after a student has selected several algorithms. Students can use this platform

to compare different algorithms, including their own, and see what algorithms perform better.

Figure 3.4: The user interface of the platform after severallearning algorithms have been selected
and run. Algorithms are selected from the Learning Algorithms menu on the left, by checking the
appropriate boxes and clicking the submit button.
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3.2.5 Based on a Real System

One of the reasons why this platform is appealing to use to teach decision automation to students

is its tie to a real system. Rather than working with sample or made up data, students get to

look at and work with actual BYU bookstore sales data. They getto see first hand many of the

real world complexities that face retail managers. At the same time the platform gives them a

virtual “sandbox” in which to play, where they can be creative and learn about common demand

forecasting algorithms as well as design new ones.

Some of the interesting features found in the bookstore dataare that there are large season-

ality trends that are tied to the school calendar. Many itemssuch as school supplies have higher

sales at the beginning of the semester. Holiday seasonalityis also seen in the apparel and gift cate-

gories. Many of the snack items experience a weekly cycle as well. These patterns can be analyzed

and planned for as students design their algorithms.

As students come up with good forecasting algorithms and strategies, the BYU bookstore

has also given the research group permission to run experiments and change prices on products

in order to try out their ideas. This makes the business intelligence platform more than just a

virtual test area. The physical bookstore can become part ofthe platform for teaching decision

automation. Several promotions and experiments have been run so far, and the potential to run

some more adds to the excitement of using this platform and learning decision automation.

3.3 Future Platform Development

As part of this thesis we have created the business intelligence platform. The business intelligence

platform has been developed as a prototype to introduce students to business intelligence. It has

been designed with revision and change in mind. As a prototype, there are a few extra features that

are being planned for the future. One extra feature is to be able to view more than just one months

sales data. All of the data retrieval, and graph drawing functions have been designed generally

enough to allow retrieval and drawing of any number of previous days. There is an HTML get

variable that is set for the amount of history to display. By changing this value more history can be
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viewed. What remains to be done is to add a control to the interface to allow a user to select how

much data he or she wants to view.

Many of the products sold at the bookstore have low quantities of sales per day. For ex-

ample paintings, art supplies, expensive clothing items, nativities, etc. may all have many days

where there are no sales or just one sale. In these cases, as well as those with more sales, it may

be desirable to view aggregated sales such as weekly sales ofan item, or monthly sales of an item.

These aggregates are already being calculated and stored inside the sales database, and there are

functions which are designed to access these aggregate sales data if certain HTML parameters are

set. Controls still need to be developed to allow the user to specify any aggregates he or she wants

to view.

As of now the Matlab API that must be followed for user defined algorithms allows for op-

tional algorithm specific parameters to be entered. This wasdefined to allow for different weighting

parameters, seasonality parameters, or other parameters that apply to a specific demand forecasting

algorithm. Currently there is no way designed for a user to enter these values manually. Instead

they must be hard coded into the database. To run a specific algorithm with different parameters

another algorithm must be created with different hard codedvalues. For example, for one forecast-

ing algorithm, moving average, which takes a parameter for how long of a window to use, there

will be four different algorithm check boxes for 1 week moving average, 2 week moving average,

etc. For now this is not really a problem, however as more useralgorithms are added to the system

this can become very cluttered, and a way for user entered parameters may be a better solution.

A final feature that is to be added has to do with the way forecasts are generated. Currently

the assumption that is made for future sales of a product is assuming the price is held constant to

the most recent price into the future. An improvement would be to allow the user to be able to set

the price for future predictions. That way the platform could be used to answer questions such as:

“What would happen to future sales if the price is raised to X dollars.” As with many of the other

features a control will need to be added to the user interfaceto allow the user to set a future price.
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3.4 Conclusion

We have created a platform in business intelligence that focuses on teaching students to use the

learning problem to select models for product demand. This platform gives students access to ac-

tual sales data from the BYU Bookstore in order to design and test demand forecasting algorithms.

Although this is a very different field than portfolio management, we have shown that the same

decision architecture used to solve problems in portfolio optimization can be used to solve busi-

ness intelligence problems. The business intelligence platform is enhanced by the collaboration

with the BYU Bookstore tying this learning platform to a real world problem with potential for

students’ solutions to be tried in the real world store.
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Chapter 4

Automated Water Management

Water conservation in the western United States is very important. The area is primarily a

desert, with little rainfall. In order to sustain large citypopulations as well as agriculture, reservoirs

have been built to capture rainwater and snow runoff in the spring for use throughout the summer.

Due to environmental regulations reservoir building has declined sharply while demands for water

have continued to increase. Without new reservoirs being built new ways must be found to conserve

the water currently being stored.

Automated water management is beginning to be used as an important water conservation

technique. By controlling reservoir release more precisely, only water that is needed will be re-

leased from the reservoir, conserving the extra water that would normally go to waste downstream.

Deciding how much water to release is made difficult because of large and variable delays in the

river, uncontrolled inflows, and various environmental factors, such as evaporation, seepage, or

rainfall.

The problem is how to decide how much water to release from thereservoir to be used

downstream while accounting for external, uncontrollablefactors and to minimize any excess re-

lease. The water management platform is designed to solve this problem and facilitate a study

in controller design for future solutions to this problem. Just as in the other platforms, system

identification, model reduction, and verification also mustbe considered in order to provide a good

solution. This chapter focuses first on describing the system to be controlled, then goes on to de-

scribe the process of modeling and controller design to solve this problem. Lastly we show the

implementation of the platform and show how it is designed toallow for many other controller de-
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signs. This chapter comprises a collaborative effort with the Bureau of Reclamation in managing

the Piute Dam on the Sevier River.

4.1 Sevier River

The Sevier River, in central Utah, serves primarily as irrigation water with a small amount used

for municipal water in the local towns. The Sevier River Basin is completely enclosed so that any

water flowing down the river empties into the desert. The Piute Dam and reservoir are located

on the upper portion of this river. Water released from the reservoir may be diverted into one of

several canals. Any water not diverted into the canals continues down the river and is lost for

any other use. This makes the Sevier River a great location to practice water conservation using

automated control. Water can be conserved by designing a decision algorithm which releases just

enough water from the reservoir so that every canal gets the water it needs, but no more.

Figure 4.1 shows the stretch of river below the Piute reservoir. The release from the dam

determines how much water enters the system. There is also anuncontrolled, but measured inflow

at Clear Creek, and eight diversion canals that take water out of the river. At the end of the river is

the small Vermillion Dam. The goal is to have no water flowing past Vermillion Dam as it will be

lost to our water users.

Each black circle in Figure 4.1 shows where there is station measuring flow. Each of the

stations on an out-flowing canal also actuates a gate which regulates the flow to match a flow value

set by the canal owner. There are also four measuring stations along the river, the reservoir release

(not shown), just above Clear Creek, near Elsinore, and at Vermillion Dam. Flow data is collected

at all of these stations every hour and stored into a central database. This remote monitoring and

telemetry has been installed in the system since the summer of 2000.

4.2 Other Work in Canal/River Automation

The majority of the previous work in canal/river automationhas been focused on obtaining accurate

measurements of the canal/river and manually controlling gates remotely. Few rivers or canal
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Figure 4.1: A stick figure representation of the central stretch of the Sevier river. The water flows
from top to bottom. The water entering the system is determined by water released from the dam
and the measured but uncontrolled inflow at Clear Creek. All outflows are measured and controlled.
A small metal gate called Vermillion Dam represents the end of the system and any water flowing
over the dam is lost downstream.
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systems in the world have a computer determining how to control the gates releasing water from

various reservoirs. This is mostly due to the fact that wateris such an important resource, and many

people are skeptical about having their livelihood controlled by a computer. There are however, to

the best of our knowledge, only two groups that have had success in controlling rivers and canals:

one in southern France, and one in Australia.

The group in southern France (Litrico, Malaterre, et. al.) has designed various algorithms,

including robust control and proportional-integral (PI) algorithms, to control gates on different

canal systems [17], [16]. They have also done some work with canal modeling using St. Venant

equations for water flow [20]. The group in Australia, led by Erik Weyer, has modeled canals using

a mass balance model and designed several different controllers including PI, and linear quadratic

Gaussian control (LQG) to control canal gates [28], [29].

None of these approaches work very well with our system. First, the work has been done

on canals that have a very small grade and accurate flow measurements. The flow measurements

on our river are not very accurate and may be off by as much as 10%. Also our river has steep

grade which causes the water to flow more quickly than the canals which changes the system

dynamics. Second, the delay in our stretch of river is over a day and we receive data only once an

hour. Previous work has been on canals with much less delay and data collection every second or

minute. Third we have no control of the water after it has leftthe reservoir except for the water

being diverted into the canals. Previous work has relied on control structures along the canal/river

to control the flow. Because of these differences we will be using different models than these

groups.

4.3 Modeling the river

4.3.1 Select a Model Class

The first step in modeling the Sevier River is to select a model class that captures the dynamics of

the river. In [22] Maxwell compares several different models of the Sevier River. He concludes

that a parameterized mass balance model most correctly describes the river during summer months
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when there are high flows. We select a parameterized mass balance model as the basis of our

model class, however we add to that model terms for a third order dynamical system. This allows

the model to also capture some of the smoothing effects of water flow that are absent using only

the parameterized mass balance model. The rest of this section will describe the development of a

new model for the Sevier River using this new model class.

We model the Sevier River as a multiple input single output (MISO) system with the flow

past Vermillion Dam being the system output. We treat the tworiver inflows and the eight outflows

to the canals as system inputs because each represents an external influence on the water in the

river. Since the outflows of the river are measured, their exact value is known and the coefficients

to these system inputs will be fixed at negative one. The reason negative one is used is because

water is being taken out of the river. Because the influence of the inflows on the output is uncertain,

we let the coefficients to the inflows be variables to be determined from our learning algorithm from

the data. This allows the model to account for evaporation, seepage, or other inflows or outflows

that may occur along the river before the water reaches the bottom of the system. Equation (4.1)

shows the mathematical model of the system.

y(k) = a1y(k−1)+ . . .+a3y(k−3)+b1u1(k−d1)+b2u2(k−d2)−
10

∑
i=3

ui(k−di) (4.1)

Our model (4.1) states that the output at timek, y(k), is determined by the previous three

outputs as well as the positive and negative flows added by thesystem inputs. We define inputs in

the order that they affect the system,u1 as the reservoir release,u2 as the inflow at Clear Creek,

andu3, . . . ,u10 as the other canals. We also definedi ,(i = 1, . . . ,10) to be the delay of the river

from input i to the end of the river.
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4.3.2 Determining the Delay

To determine the different delays in the system we look at flows from two points along the river.

We find where there is a large shift in flow at the upstream pointand find how long it takes for there

to be a corresponding shift in the flow at the downstream point. The reasoning for this method is

that a possible experiment to determine the delay would be tolet a large amount of water out at one

time and measure the time it takes to reach the next part. Using data from 2007 we found several

places in the data where there were large fluctuations in the flow and averaged the delay time to

find different delays in the system. A sample of this technique is shown in figure 4.2. To find the

delay of the canals we use the same technique, however we lookfor places where the upstream

river flow is constant, the canal has a large shift, and the downstream shift is in opposite to the

canal flow see figure 4.3.
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Figure 4.2: The delay for the stretch of river between the reservoir and Clear Creek is found by
finding corresponding changes and measuring the delay.

It must be noted that the delays we find using this method are approximations or averages

of the actual delay. As the amount of water flowing in the riverincreases the flow will be faster and
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Figure 4.3: Finding the delay of a canal. The upstream river is constant, the canal reduces the flow
it is taking out of the river and the downstream measurement reflects an increase in flow.

there will be less delay for the water to reach the bottom. Theopposite is true if there is less water

flowing. When we validate a control solution we will need to show that it is robust to differences

in the delay of the river.

Using this technique we determine there is a delay of approximately 14 hours from the

reservoir to the Clear Creek inflow. There is a delay of another 18 hours from Clear Creek to

Vermillion Dam. This is a total of about 32 hours for the entire stretch of river. Table 4.1 shows

the delays for each part of the system.

4.3.3 Selecting Data

Since water conservation is most important during the irrigation season we want our model to be

effective in describing the river during spring and summer months. We will use river data during

the months of April through September for six years (2000-2004,2006) to train our model, and we

will use data from those same months for 2007 and 2008 to validate our model. We choose not to
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Table 4.1: Symbols and delays associated with several stations along the Sevier River.
Station Name Symbol Delay

Piute Reservoir srps 32
Sevier River above Clear Creek srcc 18

Clear Creek ccd 18
South Bend Canal sbch 16

Sevier Valley Piute Canal svpc 15
Joseph Canal jch 15
Monroe Canal mch 14

Brooklyn Canal bch 13
Elsinore Canal ech 12
Richfield Canal rch 12

Sevier River near Elsinore sre 12
Anabella Canal ach 8

Vermillion Canal vch 0
Sevier River at Vermillion srv 0

use data from the year 2005 because that year was a flood year and the flows are unlike any other

year. When that year is used for training it causes the model topredict too much water for the other

years. It is possible to use 2005 data to learn a model which can be used in flood years, though we

have not done that here.

4.3.4 Model Selection

To select a model from our specified model class we use an iterative maximum likelihood mini-

mization method to select model parameters for our model. This method minimizes the error be-

tween the model’s predicted output and the actual output from data. We start with an inital model

and then adjust the model’s parameters along a specific direction to decrease the error. For more

information see Matlab’s system identification toolbox documentation, specifically the commands

pim and armax.
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Using this method along with the specified data and model class, we find the following

parameters for our model:
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These parameters seem reasonable as both of the inputs have positive coefficients. Also the larger

coefficient from Clear Creek could be explained by it being an unregulated inflow. This inflow

could represent all other unmeasured inflows along the riverwhich would seem to be higher if

the creek is higher and lower otherwise. The coefficient lessthan one from the reservoir could be

explained by the effects of evaporation and seepage of the released water all down the river.

Using our model (4.1) with the parameters found in (4.2), we can use actual data from 2008

as the inputs,u1, . . . ,u10, and see what our model predicts the output to be. The closer the model

output is to the actual river flow, the better our model represents the true river system. Figure

4.4 shows the model’s predicted output compared with the actual output from 2008. Flows in the

model output are negative in order to show where our model predicts a shortage of water in the

system. This means that the last canal would not be getting asmuch as was ordered. This will be

discussed further in a later section.

Because this model seems a bit too erratic we add a low pass filter to our model output to

smooth out model flows at Vermillion dam. We select the filter parameter which minimizes the

mean squared error of the model compared to the validation set. The filter parameter of .1 gives us

a reduction in root mean squared error from 21.8 to 21.1 yielding the filter

x(k+1) = .9048x(k)+ .09516u(k)

y(k) = x(k)
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Figure 4.4: Estimated output of the original learned model (without low pass filter) with input from
2008 measurements compared to the actual river output in 2008. The low pass filter will be added
to reduce the noisiness of the model.

and a final model of

x(k+1) = Ax(k)+Bu(k)

y(k) = Cx(k) (4.3)
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Handling trends in the data

In order for our learning algorithm to select model parameters with greater accuracy it was nec-

essary for us to detrend the data by subtracting the yearly mean of each signal from itself. When

running this model on-line during a watering season it is notpossible to subtract the yearly mean,

so we need some other way to detrend the data. We decide to use as a trend the weighted average

between the current year to date flows and the average from allprevious years except for 2005.

The trend for a signals at timek is

T(k) =
∑k−1

i=1 sc(i)+Dµall

D+k−1
(4.4)

wheresc(i) is the flow at timei for the current year,D = max(3000−k,0), andµall is the mean of

the output for the previous years. After 3000 hours the trendbecomes the current year’s average,

and before 3000 hours, previous years’ average is included.

The reason we do not use the current year to date average for our trend is because water

flow varies greatly during the season. During the beginning of the season the water flow is high and
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during the end of the year the flow is lower. Using the current average as the trend will cause the

early part of the year to be shifted by larger trends than later in the year, thus adding a downward

trend to the data which is undesirable.

4.3.5 Model Validation

Figure 4.5 shows the output predictions of our model for the validation set. The top graph is 2008

data and the bottom graph is 2007 data. Table 4.2 shows the absolute and root mean squared errors

for both years and together.
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Figure 4.5: The model output compared with the actual output. Top is 2008 data bottom is 2007
data.
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Table 4.2: Error of Model on Two Validation Sets.
Year Root Mean Squared ErrorAbsolute Error

2008 21.67 15.30
2007 13.37 10.62
Both 17.80 12.96

The model definitely captures many of the trends and changes for both years, but also has

periods where its predictions are off especially at the beginning and the end of the season. One

limitation on performance is the reliability of the flow measuring devices. The measurements of

flow are rated to be within 10% of actual flows. For the flows on this river that can easily be 5 to 10

cubic feet per second. Over several canals this can make a large variance. Also, when flows are at

zero or close to zero the sensors can still read “false” flows due to sediment build up in the sensor.

One of the reasons for some of the error is that we allow the model to predict negative

values. The river cannot have a negative flow, but a negative prediction is the same as predicting

a shortage for the last canal. Thus a flow of -10 cfs means that the last canal has 10 less cfs than

ordered. Because we do not keep track of how much water was ordered for each canal, it is difficult

to determine how much shortage there was in the river when theflow was at zero. So, when the

river is at zero and the model predicts some negative value, the negative prediction could be close

to the actual state of the system.

There are a few possible explanations for the model’s poor performance at the beginning

and end of the season. At the beginning of the season many of the canals are not being used and

have a flow of zero but because of sediment the sensors may be recording one, this can cause

unusually large errors. Also, some of the canals turn off before the end of the season which could

contribute to large errors at that time as well. Typically more rainfall occurs at the beginning and

end of the season, this would cause more water to be entering the system at those times. Another

explanation for the error could be temperature which has a great impact on evaporation. During

the beginning and end of the season the temperature is considerably lower than the middle of the

season.
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We feel that with the errors it is still a good model for peak season, especially given its

relative simplicity. Even when there is some error the modelstill captures the trends and seems to

be off by a constant factor. This leads us to believe that we will be able to control this river and

that feedback control can improve system performance.

4.4 Controller Design

The objective of the controller for the Sevier River is to select the reservoir release,u1, in order

to cause the output to match some desired reference signal. On the Sevier River the goal is to

minimize water waste while meeting all of the canal demands.Thus, the reference signal for the

output of the system will generally be set at some small amount or zero, and stay constant the

majority of the time. The controller will then have to decidehow much water to let out so that

water is delivered to the canal but the outflow at the end remains low.

4.4.1 Control Architecture

For our controller design we are going to use the two part control architecture shown in figure 4.6.

The first part of the controller is a feed forward controller (F in the figure). It uses any a priori

information that we have available in order to determine a close estimate of what the control input

should be. For the Sevier River this information includes thereference signal as well as future

water orders for the canals. The second part of the controller is the feed back controller (K in

the figure). This portion of the controller uses error from the system output in order to ‘fine tune’

the estimates from the feed forward controller. The plant (Pin the figure) is the system being

controlled. In our case this is the river system.

This control architecture is very versatile. It divides thecontrol into two very manageable

pieces. One piece controls for the system the best we understand it, and the other piece controls for

the things that were not designed for by the first piece. This architecture also lets us take advantage

of the data we receive from the water orders for each canal anduse that information in determining

future water release.
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Figure 4.6: The control algorithm is split up into two pieces. The feed forward controller,F , uses
all available information to get an approximate control choice, û. The feedback controller,K, uses
the error,e, to adjust the approximation bydu.

This architecture also can be very useful when designing controllers for non-linear systems.

Often when trying to analyze non-linear systems we make the assumption that the non-linear sys-

tem behaves like a linear system in a small neighborhood, similar to the idea that if you get close

enough to an edge of a circle it appears to be a line. This idea is further justified for analytic

functions by looking at their Taylor Series and noting that “close enough” to the evaluation point,

the linear terms in the series dominate all the others. By designing the feed forward controller to

get close enough in controlling the non-linearities of the plant, a linear feedback controller can be

sufficient to achieve acceptable performance.

4.4.2 Performance Criteria

We expect the reference command to change in a step like manner since the desired flows for

the end of the river stay constant until a new flow is set. So thecontroller will be required to

asymptotically track step changes in output. Due to the large delays in the system it will be difficult

to have fast tracking, but we want to make sure that we eventually get to the right value. Canals
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also change in a step-like manner so we will require asymptotic tracking of step changes in the

canals.

In addition to being able to follow changes in the river or canals we also want the controller

to be robust to situations when the river behaves differently than our model predicts. While we

expect our model to be descriptive of the behavior of the river, we know it can never be 100 percent

correct. We want our control performance to be robust to incorrect parameters in our model. The

performance must also be robust to differences between the delay we use in our model and the

actual delay of the river.

Finally, we desire our controller to reject disturbances. This can include noise in the mea-

surements, external disturbances such as rain or high temperatures, and sudden changes in canal

flow without making appropriate orders first. In light of these disturbances the controller should

maintain or return to reference flow.

4.4.3 Feed Forward Control Design

As stated before, our goal in designing the feed forward controller is to get the output to track the

reference as closely as possible. In order to asymptotically track step changes in the output, the

final value of the output needs to be equal to the reference command. We will chooseF to be the

inverse of the final value of the plant. This suggests that we set F = P(1)−1, whereP(1) is the

discrete time transfer function of the plant evaluated atz= 1, which gives the final value of the

plant. Now we show that this value forF gives us asymptotic tracking.

With only the feed forward controller the open loop transferfunction fromr to y is

y= P(z)F(z)r (4.5)

The final value theorem states that the final value of a time function x is the same as the

limit of its laplace transform evaluated at 1, lim
t→∞

x(t) = lim
z→1

(z−1)X(z).
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Applying this theorem yields

y= P(z)F(z)r (4.6)

lim
t→∞

y(t) = lim
z→1

(z−1)P(1)∗P(1)−1r (4.7)

lim
t→∞

y(t) = r (4.8)

Thus for this selection ofF we have a controller which is both stable and meets our performance

criterion of asymptotic tracking.

Since the model we developed in the previous section is the best idea we have for the plant,

we use that model to determineF = P(1)−1. The transfer function for our model (see (4.1)) is

P=
.0952z2

(z− .9048)(z+ .533)(z2+ .2619z+ .3199)
. (4.9)

Applying the final value theorem to the model yields a final value of .412. We then letF = 1
.412 =

2.426. Figure 4.7 shows the open loop system response to a step in the reference command using

this F .
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Figure 4.7: Open loop system with the feed forward controller. The plant is the model developed in
the previous section and the feed forward controller has gain equal to 2.426. The system is stable
and tracks steps in the reference command.
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The feed forward controller also receives the water orders from the different canals. It uses

these orders to predict what will happen to the canal inputs to the plant. From (4.3) notice that

the inputs are each multiplied by a gain and added to the system. This controller takes each canal

order and multiplies it by the inverse of the gain from the model and subtracts it from the control

input. This has the effect of changing the reservoir releaseearly, by the same amount that the input

will affect the flow in the river later on. We will show how thisworks in section 4.5, controller

validation.

As figure 4.7 shows, the feed forward controller performs very well when the plant is the

same as the model we used in designing the controller. Unfortunately, but as expected, the feed

forward controller is sensitive to errors between our modeland the actual river. Figure 4.8 shows

a possible response of our system for a case where the river isdifferent from our model. When the

river behaves differently from our model the final value of the system does not match the reference

command. The system still maintains stability, however it no longer has asymptotic tracking. This

motivates the need for the feedback controller.
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Figure 4.8: An example of the possible error in the open loop system when the river is different
from the model we used to determine our feed forward controller. This shows the need for a
feedback controller.
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4.4.4 Feedback Controller Design

One of the important parts of our platform is the fact that many different controller designs could

work for the feedback controller. Because our performance requirements require us to asymptot-

ically track a step input we need a controller with an integrator. In this section we will design

a proportional integral (PI) feedback controller, howeverother optimal controllers could also be

designed including, LQG,H∞, L1, etc.

The PI controller we have designed will be a controller of theform

K = kp+
ki

z−1
(4.10)

wherekp is the proportional constant or proportional gain,ki is the integral constant or the integral

gain, andz is the discrete laplace variable. These two gains must be carefully selected in order

to achieve the desired control performance. If the gains aretoo high our controller may become

unstable. If they are too low, the controller will not achieve the desired results.

We follow a standard process for selecting these two gains. First, we hold the integrator

gain constant and adjust the proportional gain and check thesystem closed loop response. This will

determine in large part how fast our controller response will be. The higher the gain is the faster the

response will be, but also the more overshoot there will be. We continue adjusting the proportional

gain until we achieve the most desirable response. After selecting a decent proportional gain, we

keep it constant and adjust the integrator gain. This gain primarily affects how fast the system

reaches steady state. However, as the gain increases too much, the system will also experience

more overshoot.

While adjusting these gains we also have to pay attention to the gain and phase margins

to determine how close the system is to loosing stability. Small margins signify that the system is

stable but if there is very much uncertainty, the system withthe true plant may not be stable. The

gain margin is a measure of how much the system gain can increase before the system becomes

unstable. The phase margin is a measure of how much shift in phase a system can take before it
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becomes unstable. The phase margin is also related to systems with delay. The more delay there

is in a system the more the phase will shift, and so the more phase margin is needed. Since our

system has large delays, we need to design our gains such thatour phase margin is sufficiently

large. We can increase the phase margin (and gain margin) by decreasing the gains.

The result of our gain tuning process results inkp = 1 andki = .05. The bode plot in figure

4.9 shows that we have a gain margin of 2.69 and a phase margin of 139 degrees. These margins are

sufficient for the closed loop system to be stable even with the large delays in our system. Figure

4.10 shows the step response of the closed loop system containing the plant with our feedback and

feed forward controllers where the plant is as we have modeled it.
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Figure 4.9: The closed loop bode plot of our system shows thatwe have a gain margin of 2.69 and
a phase margin of 139 degrees. These are sufficient margins for robust closed loop stability.

It is important to note that the delays we measured when obtaining our model were just

estimates. Not only may they be incorrect, but they may change depending on how much water
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Figure 4.10: The step response of the closed loop system withboth feed forward and feedback
portions of the controller.

is flowing in the river. The more water there is the faster the water flows and the less delay there

should be in our system. Conversely, the slower the water flows, the greater the delay will be.

Because of this uncertainty, we need to be sure that the closedloop system is still stable if the

delay in the river is different than we modeled. Figure 4.11 shows the step response of the closed

loop system with eight hours more delay and eight hours less delay. Even with these extreme cases

the closed loop system is still stable. With more delay thereis poorer performance of the controller,

however if there is less delay the controller performs better.

4.5 Controller Validation

In the preceding sections, we created a model for the Sevier River and designed a controller to

control the reservoir release. We have shown that the designed controller is stable for differences

in delay and has good nominal performance in tracking a step input. By nominal performance we

mean performance on the system as modeled not taking into account inaccuracies in the model. In

this section we are going to show that the controller remainsstable even with inaccuracies in the

model, called robust stability. We will also show the robustperformance of the controller, which
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Figure 4.11: Closed loop sensitivity to delay uncertainty. If the river has more delay than modeled
the performance is worse but the system is still stable. Withless delay the performance is actually
better.

is that the performance of the controller remains acceptable with disturbances and inaccuracies in

the model.

4.5.1 Stability and Performance With Disturbances

Step Disturbance in Canal Input

The first type of disturbance to consider is if a canal suddenly takes more water than is ordered.

This can happen because of an inaccuracy in the order or the canal measurements. It can also

happen if the true impact of a canal input on the river flow is not -1, but some other value. This

would mean that the parameter for the canal input is incorrect. Figure 4.12 shows the river output

at steady state flowing at 10 cfs. At 100 hours a 10 cfs step input to a canal occurs. This canal

disturbance has no order attached to it and so there is no way for the feed forward controller to

compensate for the disturbance. There is a delay of 20 hours before the disturbance affects the
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river output. At that point the controller begins to make changes but the river flow continues to

drop for 32 hours since it takes that long for the changes to reach the end of the river. From the

time the changes start to affect the river output it takes approximately 35 hours to correct back to

within 10% error of the reference.
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Figure 4.12: The river output in response to an unmodeled 10 cfs step input in one of the canals
with delay 20. The disturbance is attenuated by 60% and eventually returns back to zero steady
state error.

The performance of this controller at rejecting disturbances in inputs seems disappointing,

over 100 hours to correct from a step disturbance. While this is slow there are several good results

of this performance. First, stability is maintained in the controller. Second, the disturbance in the

canal was 10 cfs, yet the error in the outflow was mitigated by 60%. Third, this is an extreme

situation where the disturbance was held out indefinitely. Usually when canal operators make

errors in the order it is corrected within a day, which would help the performance of this controller.

Finally, this response does not use the feed forward part of the controller because we assume for

a worst-case scenario that the canal operator may not changethe order. Once the canal input was

changed from the order, the order could have been automatically updated, which is how the system

operates under normal conditions unless a manual override is made by the canal operator. This
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would still have caused some error but the feed forward part of the controller would have kicked in

20 hours before the error was noticed at the end of the river bythe feedback part of the controller.

This would have dramatically reduced the final disturbance.

Incorrect Canal Delay

The next disturbance to validate is if the delay of a canal on the actual system is different than we

have previously modeled. To perform this validation the same step disturbance of 10 cfs is going

to be given to a canal with supposed delay 20 hours. This time there will be an associated order 20

hours ahead and the actual delay for the river will be varied.Figure 4.13 shows the river output for

the canal delay being off by two and four hours.

50 100 150 200 250 300
8

8.5

9

9.5

10

10.5

11

11.5

12

hours

F
lo

w
 in

 c
fs

Output of the river with an anticipated canal change but incorrect delay.

 

 
River correct delay
Canal delay off 2
Canal delay off 4
Canal Output

Figure 4.13: Shows the closed loop sensitivity to delay uncertainty. If the river has more delay than
modeled, the performance is worse but the system is still stable. With less delay the performance
is actually better.

The controller still maintains stability with this disturbance and the errors are only outside

of the acceptable error of 10% (as stated above, measurements are only accurate to about 10%) for

a few hours with the 4 hour discrepancy, and not at all with the2 hour discrepancy.
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Sensitivity to Input and Output Noise

High frequency white noise is not too damaging to the system.In fact we have assumed that many

of our measurements are going to have noise on them. Figure 4.14 shows the output of the system

when noise is added to the input and the output. Input noise isadded to the reservoir release and

is shown in the top graph. Output noise is added to the output measurement and is shown on

the bottom graph. The noise is added to a simulation with a step input at time zero and a step

disturbance on a canal at time 500.

Because of the large delays in the system and the slow responseof the controller, it is unable

to correct for noise in the system. It takes 32 hours for changes in the input to be seen at the output

so reducing the noise which can be changing every hour, is notpossible. We can see from figure

4.14 that the closed loop system maintains stability with the noise. General performance does not

seem to be slowed down much due to the noise. The rise time and the disturbance rejection do not

take any longer.

4.5.2 Simulation on 2008 Data

As a final method of validating the controller it will be tested on the true river data for the summer

of 2008. The desire is to validate whether the controller remains stable and meets desirable control

objectives with noisy data. Another goal is to say what the controller would have done if it had

been running in 2008 and how much water it would have saved. Since there is not any order data

for 2008, we use the actual amount of water that was flowing outof the canal as its order. Under

normal canal operation this should be within our measurement error of what the actual order would

have been. We then give that order to the feed forward controller with enough advance that it can

make any changes it needs. Figure 4.15 shows how well the controller performs when we enter the

actual outflow as the reference command to track.

The controller is able to track the actual reference commandvery well, better than the

model alone predicted the output to be, see figure 4.5 top. Next the controller was run with a

reference command of one cfs, and again with a reference command of five cfs. Figure 4.16 shows
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Figure 4.14: Top: Output of the system when white noise is added to the input, compared with the
output of the system with no noise. Bottom: Output of the system when white noise is added to
the output, also compared to the system with no noise.
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Figure 4.15: Controller output when run on 2008 data with actual river output as the reference
command to track. The controller is able to match the output very well. Orders were taken from
the actual canal inputs, which mimics how under normal operation canal inputs are made to match
the water orders.

the output of the controller with each reference signal, redand blue respectively, as well as the

actual river output in green.

From figure 4.16 it is easy to see that the controller would have conserved water compared

to the actual flow in 2008. The controller also shows the valueof the water going negative. This

represents not enough water being let out of the reservoir and a shortage to the last canal. This

is not desirable. In fact, it may be more desirable to waste a little more water in order to not

have a water shortage. One way to do this would be to increase the reference command until the

controlled output goes below zero only some of the time. Table 4.3 shows the different amounts of

savings and water shorted by running our controller with varying reference points.

4.6 Platform Implementation Details

In this section we describe how the automated water management platform is implemented. Up

until now the focus has been on creating a model of the river and designing a controller for the

reservoir gate. This is the work that must be done by a studentin order to use this platform. Once
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Figure 4.16: Actual river output (green) compared with system output with the controller actuating
the reservoir release. The controller was given a referencesignal of 1 cfs (red) and 5 cfs (blue) to
try and maintain. The controller saves water but also may cause a canal to not get enough water
because it goes below zero several times.

Table 4.3: Shows the amount of water that could have been saved and the amount of water shorted
to the last canal, if we would have run our controller in 2008.All values are in Acre Feet. As the
controller tries to hold the river release closer to zero we save more water but we also tend to not
let enough water out some of the time.

Reference CommandWater Saved Water shorted (Less than zero)

r = 1 6514 AF 650 AF
r = 5 5508 AF 312 AF
r = 10 3985 AF 140 AF
r = 15 2375 AF 55 AF
r = 20 716 AF 20 AF
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the controller is created it can be inserted into the platform which will implement the controller on

the reservoir.

4.6.1 Platform Architecture

The architecture of the platform contains three pieces which work together to control the reservoir,

and also the gates on the canals. The first part is the on line water order form. This form allows

canal owners to go on line and enter the future orders for their canals. These orders can then be

used by the controller as explained above to make a feed forward estimate of the needed control

input. Also when the time for the water order comes up the platform can actually move the gate to

the appropriate place just as it does for the reservoir.

The second part is the implementation of the controller itself. The controller is imple-

mented in Linux so that it has access to the database of water orders and current river flows. It has

been implemented as described in the previous section usingthe PERL language and it uses Perl’s

DBI to access the database. Once it calculates how much water to let out of the reservoir it writes

the value to a file to be used by the third part of the platform. It also writes to the file the most

current order for each canal so that those gates can also be set.

The third part of the platform is a program that constantly runs on a windows server. The

windows machine has a shared folder with the Linux machine and it waits until the controller file

appears there. Once it sees the file it opens it and then uses the API of a third party software called

Loggernet to communicate via radio to each station site to set the flow for each gate. Each gate

including the reservoir gate has a local controller which automatically adjusts the gate up and down

to match the desired flow set by the platform. Loggernet only runs on windows which is why this

third part of the platform is on windows.

One major benefit of this three part architecture is modularity. It allows us to completely

replace the controller with a new design or implement it in a new language without changing the

rest of the platform. As more students use this platform theycan just focus on the controller design

and not have to worry about communicating with the stations.
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Each student who creates a controller can just set up their controller to run on the Linux

machine via a cron job every hour. There they have access to all past data and future water orders.

Their algorithm needs only to output a text file with the amount of water to let out of the reservoir

(in cubic feet per second) and the platform will handle everything else. Of course before any

student can insert their control algorithm there must be sufficient testing to ensure that it will work

on the real river, just as we have shown above with the controller design in this thesis.

4.6.2 Communication to the stations

Loggernet software handles the communication between the server and each of the stations on

the river. This communication travels via ethernet to a datahut near Richfield, then from there

travels by radio to the different stations. These radio communication channels present the single

most challenging part of making the platform functional. The radio channels can be very noisy

and are not very reliable. It can take a long time to connect ortransmit data and the signal can

be dropped entirely. Also the entire system of stations is onjust a couple radio frequencies. If

someone is using the frequency to change a station’s flow or read its values then the platform will

not be able to connect to any other station on the same frequency. This can become more serious

when someone forgets to log off and keeps the line tied up for hours.

While communication errors are still present, much care has been taken in the platform de-

sign to mitigate communications problems and increase the reliability of the system. The platform

is designed to only call out to the stations once per hour to make needed changes. This reduces

the traffic on the radio frequencies during the rest of the time. The platform also is designed to

make all the needed changes on the canals so there should not be a need for other people to use the

communication channels as often.

Before it makes any communications with the stations, the platform checks to determine

whether there has been a significant change in the order for the canal or reservoir release. A

significant change is .25 cfs for a canal and 2 cfs for the reservoir. If there has not been a significant
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change, it will not call to make a change. The only communication taking place is for those stations

where there is a significant change.

When the platform actually does need to make a change it waits along time for the com-

munication to be established. If communication fails it will quit all communications and wait for

30 seconds and then try again. After three separate tries it will give up until the next hour.

4.6.3 Security and Reliability

Because water is the livelihood of those who are served by the reservoir, great care must be taken

to make the system secure and reliable. If the system fails the failure must be recognized in time

to minimize the damage. If a farmer looses water for a few dayshis crop for the year could be

ruined. This danger causes many of the water users to be skeptical to allow the platform to control

the reservoir and the gates.

The on line water order entry form uses SSL encryption and a password system to ensure

the identity of those using the system. Those who use the system must have their account manually

verified and be given access to each canal they are to be able tocontrol. Users are not allowed to

see any canal that does not belong the them.

If at any time the platform has trouble making a change on a canal or the reservoir then it

will send an email notification that there is a problem. The email will then be forwarded via short

message service (SMS) to the administrator’s cell phone. That way someone knows immediately

and can evaluate and fix the problem. Possible causes of theseerrors could be communication

error, a software error, a file read or syntax error, or even analarm if the flow is outside of some

prespecified range.

As a guaranteed fail-safe, every station is equipped with two flags that must be turned on for

the platform to control the gate. If at any time the platform must be discontinued for an emergency

reason one can simply change either of the flags. The first flag,AUTOMODL, must be set to 1

otherwise the platform will not attempt to change the set flow. The second flag, AUTOGATE, must

be set to 1 otherwise the local control will not try to move thegate to the set flow. Having these
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fail-safe flags means that in the worst case scenario one can just turn those off and move the gate

manually.

4.7 Conclusion

In this chapter we have designed a learning platform for water management. This platform includes

all of the applications and software necessary to make a reservoir gate control algorithm move the

corresponding physical gate. This platform is designed in away that any control algorithm in

any language may be used, provided that it can access the database. This allows students to design

control algorithms and try them on the actual river, provided that their solution has been sufficiently

tested and verified.

We have also used the decision architecture introduced in chapter one, to design a control

algorithm to be used on the Sevier River. We modeled the river using a parameterized mass balance

model, and verified the model with actual river data. We designed a two part controller with

both feed forward and PI feedback controllers. We showed that this controller design is robust to

modeling errors, noise, and unmodeled disturbances, and that the controller design is likely to have

saved a significant amount of water during the 2008 irrigation season using 2008 data.
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Chapter 5

Conclusion

At first glance portfolio optimization, business intelligence, and automated water manage-

ment might seem like completely separate problems in three different fields. However, all of these

problems have several things in common. They are all problems that can lend themselves to study

in decision autmation. Each problem relies on making intelligent decisions from data. In doing

so their solutions handle information in similar ways and yield algorithmic decision processes. Fi-

nally, each problem is simple to understand but difficult to solve. Good solutions to these problems

are actively being researched and developed.

5.1 Decision Architecture Applies to Each Problem

We have introduced a decision architecture which leveragesthese similarities and breaks each of

these problems into four smaller problems that work together to produce an algorithmic decision

process. These problems are the decision problem, the learning problem, the model reduction

problem, and the verification problem.

The decision problem focuses on making the best decision based on a model of conse-

quenses for each decision and an objective function which rates possible consequenses. In port-

folio management the decision is to determine which securities should be purchased in order to

create a portfolio which will have the most value after a certain amount of time. In the business

intelligence problem the decision is to set the price at which to sell each product in order to maxi-

mize profit. In the automated water management the decision is to release enough water from the

reservoir to meet water demands without letting out any excess water.
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In the learning problem a model of possible consequenses is chosen from a model class

using historical data and a measure of quality. These modelsmay contain varying amounts of

uncertainty, which may affect how the decision problem is solved. In portfolio management models

are learned in order to predict future values of securities.Models in business intelligence predict

future sales of each product. In automated water managementmodels are used to predict the effects

of released water on downstream flow.

Each problem area may be complex enough that models used for learning and decision

making may not be able to be computed. The model reduction problem finds simplified models

which are still accurate and lend themselves to be computationally tractable. In portfolio man-

agement the number of stocks being considered must be reduced for some models. In business

intelligence model parameters must be reduced by limiting the number of products whose prices

influence another product’s price. In automated water management the physical system is so com-

plex that a simplified model must be designed to capture the most important dynamics of the river.

The verification problem involves designing experiments that test the decision process in

order to show the quality of the solution. Each solution needs to be verified to determine whether

there is evidence that the solution does not perform as desired. For portfolio management this

can be done by comparing two different decision processes inan online trading platform such as

the Tour de Finance. For the business intelligence problem predicted quantities sold of a product

can be compared with its actual quantities sold. For automated water management past water data

can be used to validate a water management algorithm to an extent as shown in chapter four. The

algorithm can also be tried on the real river to determine howwell it works, which is planned for

the future irrigation season.

5.2 Three New Learning Platforms Were Created

In addition to formulating a decision architecture we have created learning platforms in three prob-

lem areas: portfolio management, business intelligence, and automated water management. These

learning platforms are good platforms to teach decision automation to students for several reasons.
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All of the platforms are non-traditional applications for students to study decision automation. The

problems addressed by each platform are easy to understand by students of all diciplines. Portfo-

lio optimization and business intelligence do not require extensive mathematical and engineering

prerequisites, so they can be taught early in the educational process. This allows students an op-

portunity to decide if they want to pursue education in the field.

For the portfolio management platform we created an in depthtutorial showing how a

student could use the platform to learn about algorithmic decision processes. We showed examples

of how students were naturally led to consider the four problems of decision, learning, model

reduction, and verification, and consider the interactionsbetween them to address important issues

currently being researched in the field. We also showed how students could be introduced to some

of the important results in portfolio optimization by usingthe portfolio optimization platform.

For business intelligence we developed a demand forecasting platform that uses live BYU

Bookstore sales data to aid students in developing demand forecasting algorithms and validate them

on real products. Students are able to create their demand forecasting algorithms in matlab and

then upload them to the database which automatically adds them to the website. A web interface

allows any user to select any product and see the actual salesalong with the predicted sales of any

algorithm.

For automated water management we created an algorithmic decision process using our

decision architecture. We modeled the river, designed a decision algorithm, or controller, and

validated the results carefully to make sure that it would work as designed. Because of the model

selected, model reduction was not necessary. We then implemented this controller design in a

modular way so that the infrastructure for controlling the gate can serve as a platform for other

controller designs. We designed into the platform several safety features that protect the river

system against software error to help ensure that the correct amount of water is delivered.

Future work can proceed in several different directions. Since each of these problem areas

are areas of current research, work can be done to develop improved solutions to each problem.

This could include developing higher fidelity models and/orimproved decision solutions for port-

73



www.manaraa.com

folio optimization, business intelligence, and automatedwater management. Work can also be ex-

panded on each of the four problems of the decision architecture. Better algorithms are needed for

learning, decision making, model reduction, and verification. Finally, future work can be directed

at the interaction between these different problems, as discussed in section 2.3.2. It is important

to find ways to improve how these problems work together, to yield better algorithmic decision

processes.
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