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ABSTRACT

The Role of Algorithmic Decision Processes in Decision Audtion:

Three Case Studies

Blake E. Durtschi
Department of Computer Science

Master of Science

This thesis develops a new abstraction for solving problendecision automation. Deci-
sion automation is the process of creating algorithms whgghdata to make decisions without the
need for human intervention. In this abstraction, four kagais/problems are highlighted which
must be considered when solving any decision problem. Tfmseproblems are the decision
problem, the learning problem, the model reduction probkema the verification problem. One of
the benefits of this abstraction is that a wide range of datigroblems from many different areas
can be broken down into these four “key” sub-problems. By $oogi on these key sub-problems
and the interactions between them, one can systematigaihg at a solution to the original prob-
lem. Three new learning platforms have been developed irmatbas of portfolio optimization,
business intelligence, and automated water managemerden to demonstrate how this abstrac-
tion can be applied to three different types of problems. therautomated water management
platform a full solution to the problem is developed usingg thbstraction. This yields an auto-
mated decision process which decides how much water tosesfeam the Piute Reservoir into
the Sevier River during an irrigation season. Another méitivafor developing these learning
platforms is that they can be used to introduce studentsl afisiplines to automated decision
making.
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Chapter 1

Introduction

Decision automation is the process of creating algorithmautomate decisions. These
decisions can range from simple logical decisions, “if Xgrtirdo Y”, to complex real valued
decisions, “based on the current state, sensory data, lelg future expectations, turn left 8.7
degrees, and slow down to 23 mph.” The goal in decision auiomégs to create algorithms that
can take data as input and make provably good decisionsuwtithe need for human intervention.
Although this task may seem daunting, a rigorous sciencéé&as developed to address several
key issues in the leap from data to decisions.

An algorithmic decision process, (or simply, decision @x), is a systematic process for
making a decision. It can be thought of as the final result ofsien automation. The decision
process is designed as an algorithm that can be executed om@uter, on another device, or
manually by another human.

In this thesis, we develop a decision architecture whichbeamsed in decision automation.
This architecture focuses on the key issues that must bedevad in order to create algorithmic
decision processes. Because it focuses on the most impistaas, this decision architecture may
be used to provide a pedagogical model that can be taughidersts studying decision automation.
In addition, we have also created three learning platfolmas demonstrate how this architecture
can be applied in three different decision areas: portfotibmization, business intelligence, and
automated water management.

The rest of this chapter continues with a section introdyitis decision architecture, fol-

lowed by a section describing the motivation behind ourdghrew learning platforms. Chapters
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2 through 4 describe the three decision areas and the lgaptatform for each. In chapter 2
we describe in greater detail how the decision architeatare be applied to a non-traditional,
non-engineering decision area using the example of partégtimization. We also introduce a
portfolio optimization platform. Chapter 3 describes thsibass intelligence platform, the prob-
lem it is designed to help solve, and how the algorithmic sleai process can be applied to help
solve that problem. Chapter 4 describes the automated wategement platform, going into sig-
nificant detail on the implementation of the platform andsitéution on the Sevier River System

in central Utah. Finally, chapter 5 concludes this thesis.

1.1 A Decision Architecture

When teaching about decision processes, we focus on algariind the way they use and trans-
form data. To scrutinize decisions through this lens, weeHasrowed four of the “great ideas”
from computer science to create a decision architecturs.arbhitecture breaks a decision process
into modules that can be independently formulated and d@ganeaningful problems. This sepa-
ration is useful in creating a pedagogical sequence whedests can attack pieces of the problem
before trying to master the entire process. Although oumalte goal is to emphasize the interre-
lationship between these stages, questions about thrsdlatigonship can be easily motivated by
understanding the ways specific algorithms for one stagswboa information and transform it to
be used by another stage of the decision process.

This decision architecture is based on the simple observdliat any discussion of the
guality of a decision must involve a discussion of the conseges of various choices. We will
call the mapping of choices to consequences a model. Withoudel of the consequences of our
actions, we cannot talk meaningfully about good (or bad)sieas.

With this model-focus, we characterize the modules of ngkidecision as decision mak-
ing, learning, model reduction and verification. See figude Decision making is the process
of computing decisions based on a model of the consequeri@sitable choices, along with

an objective function that scores possible consequencelsai@cterize which decisions are bet-
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ter than others. Learning is the use of historical obseyuat(data) and a measure of quality to
choose a model from a class that best explains the data. Medigition is the process of selecting
a simplified model class from which an adequate model can bsech Verification then designs
the experiments that test the decision process in ways #medrgte new data from which a spec-
ified metric can score the performance of the design. Thisgg®and how it relates to making
decisions will be described in greater detail using poidfoptimization as an example in the next

chapter.

Algorithmic Decision Processes
Model
Class

Model Reduction

S(_JIESIS_FC;L Uncertainty
implin Characterization
Models
Quality Objective
e . . . Function
> Learning ods) » Decision Making |¢——
Data Decision
Process
Verification
Performance
Measure

Figure 1.1: A decision architecture highlighting the cahtole of models in making decisions.
Four major themes from computer science are highlightechegtimary stages of a decision
process.

This decision architecture can be viewed as an abstractithredield of decision automa-
tion. Many key ideas and topics in decision automation canie&ed as specific details, for-

mulations, or ideas related to one or more of these four probl Because of the generality of

this.architecture to.the field,of decision automation, it banused in solving problems in many

3
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different decision areas that may seem very different. igttresis we will show how this decision
architecture can be used to develop algorithmic decisiongsses in order to solve three of these
problems.

Learning platforms have been developed in the decisiorsaseaortfolio optimization,
business intelligence, and automated water managememwth [atform focuses on a different
part of the decision architecture. The portfolio optimiaatplatform focuses on the verification
portions of this architecture to try to verify various potid optimizing algorithms. The busi-
ness intelligence platform focuses on the learning poribthis architecture because it involves
students creating models for future sales of retail pradudthe automated water management
platform focuses on the decision making part of this archite in deciding how much water to
release from a reservoir to downstream users.

Throughout this thesis we use the term architecture to kefek to this decision architec-
ture which may be used to create algorithmic decision psEsThe architecture includes the
intereaction between these four key problems in decisivonaation. \We will use the term learn-
ing platform, or platform, to refer to any software or hardevdesigned to be used by students in
order to learn a specific idea. Thus the portfolio managemeaiilem is a problem to be solved
by using our decision architecture, and the portfolio managnt platform is the software used in

order to illustrate part of the decision architecture talstus.

1.2 Laboratory Testbeds for Decision Automation

Learning platforms are frequently used in education in orolgive students a place to experiment
with concepts that can be more difficult to learn in a tradiélbdiscussion setting. Being able to
“try it and see” allows students the opportunity to solvelgpeons and then verify the quality of
their solutions. Platforms also play a role in motivating #tudent, by making learning fun.
There has been much research devoted to designing and eamgnlg platforms for edu-
cation in algorithmic decision processes. Some of the masiheon learning platforms currently

used come from the controls community and include the fatigw inverted pendula [30, 11],
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ball and beam systems [12], robotic arms [3], and other m@chbdevices. A growing interest in
multi-agent systems has likewise motivated team systentsasirobot soccer [10] and other “bot”
systems [1] that can execute various cooperation strateégierchestrate efforts to accomplish a
common goal. These systems can be powerful platforms fdests to solidify their understand-
ing of decision processes.

One drawback to common decision making platforms is that tequire the students to
have a mastery of concepts from physics, math, and engmgekeéfore they can explore the im-
portant problems in algorithmic decision processes. Bexafishis, students typically are not
introduced to systems theory or decision algorithms befloed junior or senior year. Another
problem is that systems theory is usually only being taugtgrigineers while students from a
wide range of technical areas could benefit from principfes/stems theory.

Our view is that the central ideas from systems theory anorigitgnic decision processes
should be introduced to students much earlier in their ethrcaThis view is motivated by our
observation that algorithm design aids any decision magingess, thereby playing a foundational
role in a broad range of applications and fields. Thus, stisdehall disciplines could benefit
from an introduction or overview of algorithmic decisioropesses. Also, with earlier exposure,
students will be able to decide sooner if they like the stuidgigorithmic decision processes and
get a jump start on preparing for the rigors of the field.

To accomplish this, we suggest introducing various le@piatforms in areas accessible
to younger students. The goal is to simplify the context fiscdssing central issues in systems
theory and algorithm design, providing jumping off points §tudents to appreciate and explore
the depths of the field. Our point of view is that computer isceeis fundamentally about solving
problems using computers. In the context of decision-ngkims suggests making provably good
decisions in the face of uncertainty and complexity comstsa The central problems associated
with this algorithmic approach to decision-making are 1 tlecision problem, 2) the learning

problem, 3) the model reduction problem, and 4) the verifiogproblem.
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Another common trend in the teaching of decision processesuse virtual platforms in
order to simulate designs for decision algorithms. Kongttk al. at Oregon State University have
been using a virtual laboratory of a simulated chemical vaeposition process in their program
and have shown it to be effective in teaching control thediyey report that students felt that it
was the most effective learning medium used, even abovegaiyaboratories [15].

All of our platforms described in this thesis contain bottuwal and physical components.
The portfolio optimization platform uses real stock datzteate a virtual trading platform with
the ability to add virtual dynamics. The business inteltige platform uses actual product sales
data to drive a demand forecasting platform. The water memagt platform is built upon a real
reservoir release gate and uses software to model a physiealand implement algorithms to
control the gate. The virtual component makes each platkagily accessible to many students
who can design their own algorithms in software, while thggital component of each platform
makes the decision algorithm yield real world solutiong thatter to real people. We believe that
these real world applications tend to create a learningigilh which the student feels their work
is important and motivates him/her to learn more in ordemime up with better solutions.

While the primary use of these learning platforms is to inimgland demonstrate our deci-
sion architecture, we believe they can also serve to hetfests of all diciplines learn more about
decision automation. During this thesis as we introducedssdribe these platforms we will also

emphasize how these platforms could be used by studentgrimrg this decision architecture.
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Chapter 2

Portfolio Optimization

The portfolio optimization platform is a stock trading gtatn where students can create
trading algorithms which decide which stocks to buy and 3éHtual cash is given to each algo-
rithm or “automated agent”, which then uses that cash taer@gortfolio of assets. Live stock
data is fed into the system which adjusts the values of eaehtagportfolio accordingly. Our
contribution, and the focus of this chapter is to explainghablem that is to be solved by students
wishing to use this platform and how coming up with an aldniic decision process for this
problem leads students to ask, and answer, important questi the field of computer science.
While doing so, we will show that relatively simple solutiotasthis problem can be understood
by younger students, while at the same time introduce thesortgolex and interesting topics cur-
rently being researched. This can motivate students aatlyel program to desire to continue in
the field.

In the following sections we introduce and formulate thetjotio management problem.
Then we discuss each piece of our decision framework and sloswa student may formulate
each problem as it applies to portfolio optimization. Wetstath the control or decision problem
and formulate that. Then we formulate the learning probl®ve. discuss how uncertainty in the
learning problem affects the approach that should be ugethéocontrol problem. Then we for-
mulate the model reduction problem and discuss the veidic@troblem introducing our learning

platform as a verification technique for portfolio optimtiza
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2.1 Portfolio Management

The question of portfolio management deals with choosing twallocate money into different
securities with the objective to maximize total wealth ahsduture time. We have chosen portfo-
lio management as a learning platform because it is conalygimple and because the objective
is clearly parameterized in terms of equity returns. In thégy, all questions of information and
uncertainty can be posed in terms of what is known about théyereturns. This characteriza-
tion allows us to reconsider the decision problem repegtasgiwe peel back different layers of
information and study the impact of uncertainty on our peaofl

Moreover, since this problem is open loop, in that investndecisions do not affect future
equity returns of the assets (for typical investors), keyoepts from systems theory can be intro-
duced without the complexity of feedback interactions. Mbpe is that students will be motivated
to engage the rigors of the discipline necessary to mastelbck control if they first appreciate
some of the central problems arising from the interactiomnafertainty and complexity in decision
problems. Next we describe the portfolio management pnoble

Suppose an investor has a choice between holding his moreyisk free cash account
with a fixed, positive rate of return, or purchasing anyef 1 securities having varying (positive
and negative) rates of return. Any of these securities mgybehased at any time, and all that is
known about them is their historical price over a finite pémd time, pi(t), i =1,...,n. The goal
is to make as much money as possible at time T, by purchasarg@sin these securities with a
fixed initial investment. The following definitions will helmake this objective precise.

A portfolio is a distribution of wealth invested in these etss characterized by
(s1(t),...,sn(t)), wheres(t) is the number of shares of securitpwned at timet. We denote
the value of the shares of securitpwned at time by x;(t) = pi(t)s(t). The value of a portfolio
at any particular time is the sum of the value of the secusritig(t) + ...+ xn(t). We letxy(t)
correspond to the value of the risk free cash account. Tla teturn of a security is the price
change ratio of the security, given byt) = pir(mt(t) This quantity characterizes how the value of a

_1) .
fixed number of shares changes over time. The resulting dgsashthe value of a portfolio over

8
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time are given by

X1(t—|—1) rl(t+1) 0 Xl(t)
= 0 0 : . (2.1)
Xn(t+1) 0 v Ip(t+2) | | Xa(t)

Nevertheless, the investor does not have to keep a fixed mushbbares in each security.
Instead, he can change the distribution of wealth betweersdicurities at each time step. This
decision is represented by a set of numbers,= 1,...,n— 1 that indicates the dollar amount that
the investor wishes to be moved from the cash account tahhesky asset. A negative value of
u; represents a dollar amount to be moved fromithaisky asset to the cash account. We will
assume for ease of exposition that there are no transacsts, @lthough all of the ideas discussed
here can be easily extended to include them. The portfolir@aadycs incorporating this investor

decision then become:

X(t+1) =R(t+1)x(t) + R(t + 1)Bu(t) (2.2)

wherex(t) > 0 Wt, R(t+1) =diag(r1(t+1),...,ra(t+1)),

-1 -1 .. -1

- O O O

1 0
0o 1
0 O
L O O .
The dynamics in (2.2) describe how the value of a portfoliarges as a function of the
investor’s reallocation decisions(k). In this expression, the return matriR(t + 1), represents the
futureimpact of an external variable over which the investor hasardrol, while the inputu(t),

represents the change in the portfolio distribution oveictvithe investor has complete control.

Note that the positivity constraints onrestrict admissible decisions allowing the purchase of
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securities only if you have the money to pay for them. Thisg@ontext then motivates a very

basic decision problem.

2.2 The Decision Problem

The decision, or control problem is to decide which inputtlegproves the performance of the
system being controlled. In order to discuss making goodsaets we must know the conse-
guences of our decisions and we must have an objective imathich ranks the consequences
by what is most desirable. Optimal decision making theesisrsimply computing the choice
with the “best” consequence as defined by the objective immciVith perfect information about
the consequences of our decisions, the control problermbesa search over possible choices to
select the one that best supports the objective. For iladefdrmation on control see [8].

The control problem naturally surfaces in any discussiopatfolio optimization when
we consider the decision to be made by the investor. At soitialitime, t = 0, the investor has an
initial amount of cash on haTnd and no money invested in othaurgies. Thus his initial portfolio
is X(0) = {xl(o) 0o ... o} . The investor’s objective is to allocate his money into efént
securities at each time step in order to maximize at somedtutme, T, the total value of the
portfolio, |[X(T)||; =Xx1(T) +...+X(T). Stated formally,

T
ui(qj% (T[4

subjectto x(t+1) = R(t+1)x(t)+R(t+1)Bu(t) 23

x(0) = {xl(O) 0 ... o]

X(t) > 0 Wt

A student may easily discover that iteratively solving tbisblem for one time step will
yield an optimal solution to the problem for multiple step#is is because the decision for each
step is independent of the distribution chosen in the prsvione step. A suboptimal choice from

one time step cannot lead to a better result in the seconddiege This allows the student to

10
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reduce the problem to a sequence of one step problems. Natéhtk would not be true when

considering the case where there are transaction costs.

Example 1 (Perfect Knowledge of Consequencé&s)nsider the problem wherg(t), i=1,...,n
and te [0,T] is given. This problem corresponds to the situation wherenaestor has perfect
knowledge of the future returns. To maximize the value of dnégtio one needs to move all of
the money to the security with the highest return at each tiege s

Suppose we can invest in two different securities or keep oneynio a cash account. We
will start out with $100 and let x be the amount of money kept in the cash account arahs
x3 be the amount of money invested in the risky securities.r&igila shows the value of the two
securities over a 110 day period. Figure 2.1b shows the coitipo®f the optimal portfolio over

time as it switches all of the money between the three funds.

Having perfect knowledge about the future resulted in a Bfiogtion of this otherwise
complex decision problem. This simplification can lead stud to consider important questions
about decision making. For example, can you characterezadture of optimal solutions to make
their computation tractable? In other words does the optdaaign have an analytic solution?
How does computational complexity change when considexrsgpuential decision process where
making choices that appear suboptimal now may result in bemifuture payoff? For example,
sacrificing a piece in chess to obtain a better board position

Until now we have assumed perfect knowledge of the future. Wiedo not have perfect
information about the consequences of our actions, we reeedtimate a best guess of what the
consequences may be in order to make decisions consistérawviobjective. A model represents
everything we understand about the mapping between charmsonsequences. To determine a

model for future consequences, students must solve thamggproblem.

11
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Figure 2.1: Prices of two different securities shown abo&esuming perfect knowledge of the
future, the optimal policy switches all the money to the sigwvith the highest return at any

given time.
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2.3 The Learning Problem

Formulating a learning, or system identification problenplioitly assumes that something about
the mapping of decisions to consequences remains constrtime. Certainly if the relationship
from choices to consequences is changing sporadicallytomer there is no justification for using
historical observations of the system to predict futuredvedr. This constancy between decisions
and consequences is captured by the choice of model classknidwledge we have about the
true system’s behavior is acquired by running experimdrasdollect input-output data. We use a
guality metric to evaluate each model in the class basedismi#ta.

Given a class of models, input-output data, and a qualityimehe system identification
problem is to select the model from the class which best desscthe observed input-output data

according to the quality metric, see [18]

2.3.1 Sources of Uncertainty

Once a model is selected it becomes the basis for predictingetjuences of various decisions.
Inaccuracies in the predictions of this chosen model canectsam insufficient data, the model

class, or the quality metric. These sources of uncertamgyasily seen in portfolio management.

Uncertainty from Insufficient Data

Example 2 (Uncertainty from Insufficient Dateuppose we have a risky security. We no longer
assume that we have perfect knowledge about the future rebwtnthat they are a stochastic
process of independent identically distributed randomalales. We select our model class to be
the class of Gaussian distributions which are parameterizgdheir mean and variance. Our
system identification algorithm is to choose the model whosannand variance most closely
match the sample mean and variance of the historical data.

Suppose the past returns from a risky security are truly gad from a Gaussian distribu-

tion with mean, 1.10, and variance, 0.10. By taking histdrita as our sample we can compute
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Table 2.1: Estimates of the mean and variance of a distabuthen taken from finite sample sizes
are not always accurate.

Actual Estimated

sample size 5 15 50 100 | 1000
mean 1.1 1.155| .989| 1.134| 1.122| 1.088
variance A1 .040 | .148| .143 | .109 | .102

an estimated mean and variance. As shown in Table 2.1, tmeastl mean and variance change

depending on how large a sample we use.

This example shows that with finite input-output data therled model will be different
from the true system, which introduces uncertainty intopredictions. As the available historical
data increases, the sample mean and variance, and thusdti&denodel, converge to the same
as the true system. This consistency is an indicator of a ggetém identification or learning

algorithm.

Uncertainty Intrinsic to the Model Precision

Considering the previous example, suppose we had enoughhadataur system identification
algorithm could select the correct model from the modelsl&om table 2.1 we would select a
model with mean 1.1, and variance, 0.1. If we were to use tlndel) would our predictions of
future returns necessarily be accurate? In this case,gbiets of future returns are the mean of
the Gaussian model chosen as most descriptive of the ltstalata. The next data point is not
likely to be 1.1, but instead could be anything, say 1.195.

The model class chosen emphasizes a level of uncertainbesgetpredictions, character-
ized by the variance of the Gaussian distribution. We careeixpur predictions to be accurate,
on average, but within a range specified by the variance ofmmael. Thus, our particular choice
of model class builds in an estimate of the level of precigibaur predictions, and this precision

defines uncertainty intrinsic to our particular model.
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Uncertainty Due to Inaccurate Choice of Model Class

Another source of uncertainty is in the selection of the natiess itself. While we may choose
to represent returns as a Gaussian random variable, it mégct, be generated by a completely

different process for which a Gaussian process is only aroappation.

Uncertainty Due to the Quality Metric

Suppose we have enough data such that our sample mean istlwie bhange our quality metric
to choose the model which more heavily weighs the most regeak’s data. The model selected
will not be the same as the actual distribution mean, as aicelof metric reveals our assumptions
about the predictive value of the model. Likewise, one maymate a “best fit” between model
predictions and data using different norms, and the miremia each case may be an entirely
different model from the chosen model class.

Frequently the choice of metric is used to guard againstrtenogy in the choice of model
class. This is accomplished, for example, by ranking eaatteiria the class by the likelihood that
it generated the observed data, and then choosing the niadehaximizes this likelihood.

Consideration of these uncertainties in modeling leadsesiigdto a variety of important
guestions. How should one characterize uncertainty in aamadd how should this characteriza-
tion change the control problem formulation? How does orggtetests that check whether the
underlying assumptions justifying a particular choice ofdel class, metric, etc. are still consistent

with the observed data?

2.3.2 Uncertainty’s Effect on the System Identification and ©ntrol Problems

Until now we have discussed the control problem and the sy&tentification problem separately.
Because of uncertainty, it is interesting to consider howelmoblems affect one another. Given a
predictive model, when does it make sense to treat its pgredgcas the true future, leaving the for-
mulation of the control problem unchanged? When does it maksesto modify the formulation

of the control problem to account for the fact that our estes@f the consequences of various de-
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cisions are based on a model, not perfect knowledge? Likewisuld knowing that our choice of
a model will be used as the basis for decision making alten@tere of the identification problem?
If so, how?

One approach to resolving these issues suggests that #gyskem identification and
control problems should be modified to account for their iotpgan each other. For example,
some control-oriented system identification modifies systientification techniques to be com-
patible with robust control methodologies [5]. Likewisepust control can be viewed naturally
as identification-oriented control because it modifiessitad control techniques to account for
explicit uncertainty in the learned model. In the portfali@nagement example, these issues arise
naturally as the objective function in the control problesTmodified to account for uncertainty
in the predictions based on the identified model. The degreehich the objective function is
modified to account for this uncertainty can be scaled bylkaaversion parameter, facilitating an
entire class of control problems depending on the degreeson#ling to believe the predictions

of the identified model.

Example 3 (Control Problem Accounting for Model Uncertaintifow we assume that we have
uncertain predictions of future returns and show how theislen problem is different from the
decision problem with perfect knowledge of the future. We et dur one step decision problem
without uncertainty and then consider how uncertainty inrétarns affects the solution.(R+ 1)
and B are defined in equation (2.2).

J= max X(t+1
(T ()l

subjectto xt+1) = R(t+1)x(t)+R(t+1)Bu(t) (2.4)
X(t) > 0 vt

This optimization requires predictions for the future mets, r;(t +1),i = 1,...,n (used in
R(t+1)). Assuming that we solve an identification problem to find asSen distribution that

best explains the observed data, then we could use the meaadbrsecurity as the predicted
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return for that security. However, this would be equivalenassuming that our identified model
is perfectly accurate.

One way to formulate the control problem that accounts forueertainty in the predic-
tions of our model is to say that each predicted retfjris never more thag away from the actual
return, |f; —ri| < &. This gives us a range of possible values far [Jjo, J,i]. Now we need to re-
think our objective function based on the ranges of J for gaagsible combination of's. We can
think of protecting against the worst case by maximizing tiremum value of J. We could also
maximize the maximum, the median, or some other value of Jpuld minimize the difference
Jhi — Jio, €tc. In each of these situations, considering the sense ichvihe resulting investment
strategy is “best” encourages students to think deeply altoelinteraction between identification
and control.

Another way to formulate the control problem to account focentainty in the identified
model is to modify the objective to not only maximize prediceturns, but also to minimize the
uncertainty intrinsic to these predictions. This is easitgomplished in the case where we model
returns as Gaussian random processes. The error in our predireturns||fi —ri|, is normally
distributed, NO, g;). This causes J, defined in (2.4), to be normally distributed wiean 1;, and

standard deviationg;, taken from the covariance of the individual returns. Oujeative is then

max j—Adoz. (2.5)

up(t),...,un—1(t)

whereA is a user defined risk aversion parameter which can be adjustadcomodate more or
less risk. If lambda is low then the optimization will seldw portfolio based on the best return
regardless of the uncertainty. Afis high then portfolios which have high variance, or risk, waiit

be selected. This problem is the celebrated Markowitz madeth is commonly used in portfolio

optimization [19] [21].

Example 4 (Mean Absolute Deviation ModeNet another approach may discount for uncertainty

differently, by only considering the down-side risk of a fauter investment. One way of doing this
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would be to lefu; be the expected value of J based on the expected retyarsd a fixed portfolio
specified by (t). Then for each previous time%1,...,K, we compute (k) = yy — J(k), where
J(k) is how well our same portfolio would have performed at time(k) gives us a measure for
how much our portfolio would have underperformed our exgemtan the past. We then let our
uncertainty be the average of th&y's for all k. Once again using as a risk aversion parameter

gives us,
1 K
L, Max Hy— A k;y(k), (2.6)
which essentially yields the Mean Absolute Deviation (MA@}fplio optimization model [14].

Optimal Portfolio is Diversified in the Presence of Uncertainty

I risk free
B security 1

160

140

[ Isecurity 2

120

100

80

60

dollars invested

40

20

0 5 10 15 20 25
time (days)

Figure 2.2: Using a system identification algorithm to pcetliture values with uncertainty, yields
an optimal risk/reward portfolio that is diversified. Thededays correspond to the last 25 days
from Figure 2.1.

Using the same three securities that we had in Example 1, aimth uncertainty, Figure
2.2 shows an optimal policy that allows a limited amount of.risklike in Figure 2.1 when we

had perfect knowledge of the future, this portfoliaigersified splitting money between multiple
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securities to reduce risk. The return from Figure 2.2 is abbkfo compared to about 50% in the

optimal portfolio over the same time.

Cost of learning/uncertainty
160 T T T T T

optimal no uncertainty

— — — risk/reward tradeoff

150

140

130

120

110

Total value of portfolio starting with $100

100

30
time (days)

Figure 2.3: The cost of uncertainty compared to the optirtrateyy. The dotted lines represent
portfolios with different risk tolerances. Because of umaity in the future returns, portfolios
with lower risk tolerance had to diversify more. Given tha predictions were correct, diversifi-
cation lowers the optimal performance. In other words roiess incurs a performance cost.

Itis also interesting to consider how uncertainty affebespgossible solution. For example,
suppose that we have an identification algorithm with ur@eriredictions that happens to predict
the returns exactly. Since we do not know ahead of time tregt will be exact predictions, the
risk/reward decision strategy will diversify the portimiinore or less depending on the uncertainty
in the predictions. Figure 2.3 shows the loss in returns dukis diversification. By limiting the
incurred risk of a portfolio, the maximum potential is lowdras well. Viewing diversification as
a way to overcome uncertainty makes portfolio optimizatoninteresting platform for studying

control.
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2.4 The Model Reduction Problem

Until now we have assumed that the true system was contamétei model class chosen for
system identification. There are however, many problemscésted with this assumption. First,
it is almost impossible to validate. At most one can only shbet the selected model is not
invalidated by the data from the true system. Second, maddalsh can actually describe the true
system are usually too complex to be efficiently identifiediged in computing decisions. Third,
complex models may require more data than is available ierax be identified. That is, they
may be characterized by a large number of parameters, whitland a lot of data to estimate.

The model reduction problem centers around reducing cottphlhile retaining as much
accuracy as possible. The problem states that given a carapétem,G, find a simpler system
from a class of simple systen@,, such that the difference between them is minimized in some
norm.

inf |G-G|, (2.7)
GeG

See [8] for more discussion on Model Reduction.

Another way to reduce complexity is to lower computatiorahplexity by decreasing the
size of the control and system identification problems. Aanepmle of this for portfolio manage-
ment is to limit the number of stocks being considered. Thilawoid introducing the uncertainty
that comes from simplifying the model class, however, it iead to decreased performance be-
cause some of the previous options will no longer be avalablthe decision algorithm. The next
example shows many ways of how approximation may be doneuidgsts for portfolio optimiza-

tion.

Example 5 (Reducing Complexity in Portfolio Choic&ontinuing previous examples where we
have a simple model for future returns, the Markowitz forriata(2.5) for the control problem
must compute the covariance of each possible portfolics fHujuires a quadratic program to solve
the optimization, which is NP-hard. Thus, the solution canbesgolved quickly for a large number

of securities._The literature is rich with methods for appnoating the Markowitz portfolio [25],
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x 10" Mean Absolute Deviation portfolios with reduced selection set
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Figure 2.4: An experiment of the performance of the MAD mamteprogressively limited subsets
of stocks. Students must answer the question, how doesngriite number of stocks affect the
performance of the decision algorithm? The downward trefidets the bear market that has been
prevalent over the past year.

[26]. One might also consider simplifying the problem byngsan alternative formulation such
as the MAD model which can be computed with a linear, insteadqufaalratic program. Linear
programs can be solved in polynomial time.

Another alternative for reducing complexity is to limit thember of securities available for
selection. One might take the top n performers over the lasbg of time, or the lowest valued
in the Dow Jones Industrial Average, etc. In our example, wit lihe number of stocks under
consideration from a progressively smaller subset of s&earin the American Stock Exchange.
Figure 2.4 shows how the value of a MAD portfolio is affectedmdieosing subsets of securities

of different sizes. In particular, we see that it is non trlvia restrict stocks to a subset while

maintaining the best possible performance for a problenhefspecified size or complexity.
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The portfolio optimization problem introduces studentsdosider some important ques-
tions in approximation. For example, what approximatioas lbe made that keep solutions close
to non-approximated optimal solutions? How does limitihg humber of securities affect the

computational complexity as well as the performance of #a@sion algorithm?

2.5 The Verification Problem

Once the solution to a control problem has been formulatedhas been approximated where
necessary to ensure that a solution can actually be compadete very important questions re-
main. How do we know that the approximated model is still me? How do we know that the
control solution works as desired? How do we convince nahsteal people that our methods are
sound? These questions motivate the final major problemntraiahat our platform introduces
to students.

The verification stage monitors the performance of a cora@elution, including the con-
trol, identification, and reduction steps. We call such a glete solution amlgorithmic decision
process Verification determines whether we observe any new evelémat the assumptions justi-
fying many of the choices made in the design of the algoritha@cision process have been vio-
lated, thereby motivating a redesign of the solution. Nb& tve can never prove that a particular
design will always work, we simply look for evidence that @gins to fail [24].

Over time verification has become an increasingly importeshd of research. As con-
trollers are implemented in software and hardware it besomeerative to verify that these con-
trollers will work as designed. In designing system-onpceolutions, for example, 70% of the
effort is spent on verification [27]. Because of this greabeffequired, verification should be
considered early-on in the design of solutions to the chnsiystem identification, and model

reduction problems.

Example 6 (Verifying a Solution for Portfolio Optimizationn the portfolio optimization problem

we want to use verification to determine whether our decisionge® is able to select portfolios
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that are better than the competition. One first attempt cariobein on past data to determine
whether the algorithm performs above a specified benchmark.

In addition to verification with past data, running algoritBnagainst others provides a
useful means of verification. Many virtual fund managemgstesns have a way to compare
algorithms against each other in hopes of determining wtsdsetter. Brigham Young University’s
Tour de Finance (see figure 2.5) is a platform that allows fadstht-defined competition dynamics

as a particular verification method [6].

As students go through the control design process, the ®hlirdnce platform gives them
a fun competition which will also serve as a verification m@ubm. Students can create leagues
where algorithms can compete against each other. By seeiict) adgorithm performs better over

time, they can determine which algorithm is better.

2.6 Platform Description

The platform itself consists of two parts. The first part iscafine stock trading platform. The
second part is a library of functions that an automated agg@mtuse in order to interact with the
platform. Students create automated algorithms whichd@eehich stocks to purchase in order to
maximize total portfolio value. The platform gives eachrtggl 00,000 in virtual money and each
agent decides which stocks to purchase. In order to complet@msaction the agent calls an APl in
the platform library which describes how many shares to liget). The platform receives current
stock prices from finance.yahoo.com and uses that dataustatg portfolio value of each agent.
The platform graphs each agent’s portfolio value over timé students can see which agent is
performing better.
There are several things that separate this platform frdvarotirtual fund trading plat-

forms. First it has an interface for automated agents. Thc®@rages students to really try to
guantify a superior trading algorithm based on data ratiemn fust picking stocks manually. Sec-

ond, the platform is designed to use competition dynamicketermining the value of a portfolio
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Figure 2.5: Screenshot from the Tour de Finance, a virtadinig platform for portfolio optimiza-
tion. Shows several competing algorithms from the same MA®I@ehfor portfolio optimization
but with differing risk aversion parameters, and hencdedifg levels of diversification.

instead of just the value of the stocks. The platform willisetbute wealth according to the com-
parative performance between the agents. So if one agerakimgymoney but it makes less than
the other agents the platform will take some money from tgahaand give it to the other, better-
performing agents. This mimics the market share of a lagging firm which under-performs
compared with other firms. The firm will lose investors whortlvest their money in those other
firms. See [6] for a better description on how this works ad aglthe motivation behind this
design. Third, the platform allows for different groups t® ¢reated and each group can be set
up with different dynamic and rules such as trading costs, &hese groups can be created by

students in order to study different dynamics, and investragategies.

2.7 Conclusions

We have introduced portfolio management as a learninggrhattiesigned to teach students about
the decision making process and introduce them to impodantrols problems earlier in their
education. We walked through the example of portfolio manaent, showing how questions en-

countered by trying to select an optimal portfolio led toglgeestions in the problems of control,
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system identification, model reduction, and verificatiororbbver, classic results in finance such

as the Markowitz model lead to exploring the interaction agithese problems.
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Chapter 3

Business Intelligence

Just like portfolio optimization, business intelligenseaigreat problem domain for study-
ing algorithmic decision processes. Business leaders ateairge of making decisions every day.
One important type of decision that retail business leanherst make is to set the price at which to
sell each product. Retail managers must make a trade off batpm@fit margins on each sale and
guantity sold. As the price of an item increases the retarkestnakes more profit, but the number
sold will be less. As the price of an item is lower, more itemb e sold, but there will be less
profit earned on each one.

In this chapter we describe how the decision architectunaditated at the beginning of
this paper can be applied to this business intelligencel@mob Unlike the previous chapter on
portfolio optimization where we described in detail on hostadent would step through the deci-
sion architecture to solve the problem, we will only go thgbuhe decision architecture enough to
show that this problem can be approached by students inthe way. Then, we will describe the
business intelligence platform that we have built in cadia@ion with the BYU Bookstore. This
platform currently uses live bookstore sales data to addies learning stage of the process by

developing models of product demand.

3.1 Applying the Decision Architecture to Business Intellignce

In this section we will describe how the decision framewaekeloped in chapter 1 can be applied

to the business intelligence problem where a manager maistadne selling price for each product

26

www.manaraa.com



in order to maximize profit. Just as in the portfolio optintiaa problem, the business intelligence

problem can be broken down into four interconnected sublpros.

3.1.1 Decision Problem

To describe the decision problem formally we will supposa thretail store has a predetermined
list of n products for sale. Let vectgr describe the sale prices of these products wipgre=
1,...,nis the price of produdt We will let g; = di(p),i = 1,...,ndenote the quantity of produrct
sold per unit time at given pricep, whered;(p) is some function of prices (and is often called the
demand function). The revenue generated from selling ayatod is given byr; = p; * gi, which
is the sale price multiplied by the quantity sold.

We letc; be the marginal cost to the retail store for making a unit adpicti available.
For simplicity we let this be the cost of purchasing the paidtom the supplier. It could also be
expanded to include the cost of storing the product in irmgnshipping costs, or worker’s salary
associated with this product. We define expendituegas the cost of an item multiplied by the
guantity soldg = ¢; x ;. We use the quantity sold and not the number of items purdiase the
supplier because until the items are sold they are still tagiad in inventory and so their value is
still owned by the retailer.

The goal of the retail manager is to maximize profit, wherdipre defined as revenue
minus expenditures. Profitis given B/= (p— c)q, and the decision is given in (3.1). The quantity
sold is determined bi(p), whereD is a mapping fronR™ — R"" and can be a combination of

eachd;(p).

mglx (p—c)=q
subjectto g = D(p) (3.1)
p(i)

v
o
Il
-
>
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3.1.2 Learning Problem

In order to solve this decision problem we must answer hoferdint choices ofp affect the
guantity sold. In order to do this we must determine a moddidov consumers decide to purchase
a product. In retail the relationship between price and tityasold is commonly called a demand
function because often it is represented by a function. afityethis could be any relationship and
include dynamics. Predicting this relationship is calledh@nd forecasting.

The first step to modeling a demand function is to select a inddss for demand. This
model class can be as simple as a linear static function trdaadynamic systems with memory
of past prices. Modeling demand could also contain partsc(fans, or dynamic systems) which
are affected by other things beside price such as, the dagekwime of year, etc. These things
can be taken in consideration in the selection of a mode$clas

Once the model class is chosen, historical data can be usdetdéomine the parameters
of a specific model in the class which best explains the hestbdata. These parameters will be
coefficients to the demand function or the dynamic equatim®rder for parameter estimation
to be done well, it is important to use data which capturedrtiportant features you need. For
example, to learn how demand changes as price changesdatddas needed for different prices.
Similarly, data only from summer months cannot be used tmleaw demand changes based on
the time of the year. The data must be informative over theetbsange of prediction.

In the simplest case quantity can be unaffected by the pviieemay choose a model that
the quantity sold on a particular day will be the average efdaily sales over the past two weeks
no matter how the price has changed. This is commonly knowa @®ving average demand
forecasting model.

Demand could instead be a static function of the price. la tlaise the price will affect
what the demand will be, and that affect will be determinedhgyfunction specified. This is the
framework looked at by many economists and retail managéms. framework has a rich theory

built around it, with standardly accepted functions and saycome up with those functions.
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Finally, demand could be a dynamic system with memory usiitg@s an input. Not only
does the price affect what the demand will be but also whaptlee has been in the past. This
method for modeling demand is a current area of researchsaaqpiealing because it can capture
a difference between increasing a products price, and decreasing the price xo It also can
explain consumer behavioral effects, such as waiting fmghto go on sale because they have
been seen on sale before. The business intelligence phatfesign can fully support each of these

modeling paradigms.

3.1.3 Model Reduction Problem

Regardless of which model class is chosen for the demanddandtmay be necessary to reduce
the model class in order to make the computation feasible.ekample, there may be so many
different products for sale that it may be unreasonable ltwalhe demand of one product to
be affected by all of the other products, because the nunfiqgsrameters may be too many to

esimate.

Example 7 (Too Many Parameters in Demand ForecastBigppose a store sells 10 different prod
ucts, and the manager is trying to model how the sales of eamfupt depend on the prices of
all of the different products. Using a linear demand functtbere will be 10 parameters for how
each product affects the sales of product 1. For product &thee 10 more parameters, and so on.
There are 100 parameters in all which must be learned reqgiaitot of data. Now imagine a more

realistic scenario of a store with thousands of productssWwuld be millions of parameters.

From this example we can see that even for simple models timd&uof parameters may
be too large to estimate. Even if the computation was tréetde data that would be needed to
estimate all those parameters would not be readily availdblsituations such as this, algorithms
can be developed which can select subsets of related peoddice could use the data to determine
which products were bought together often, or never at@llletermine which products comple-

ment each other or are substitutes for each other. Theseergoad candidates for deciding which
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product’s price should affect another product’s price. sTéould eliminate several variables and

limit the number of parameters to be learned to a few paraspts product.

3.1.4 \Verification Problem

The verification problem is to verify the algorithmic deoisiprocess created in the first three
steps. To verify the solution to the decision problem of thisiness intelligence problem we need
to verify whether the prices selected actually do maximizdip

We can also formulate a verification problem on the model ehas the learning problem.
In this case the learning problem resulted in a demand fom¢tr system) which relates the price
selected with the quantity sold. The verification problerthwespect to demand forecasting is to
verify whether there is evidence in the data to suggest tieatdrecasts from the algorithms are
incorrect. The standard way that this is done is to test therdhm on some novel data set that
was not used in learning algorithm parameters.

One of the main benefits of the business intelligence platisrthat students have a mech-
anism for verifying whether the data suggests that thewrétlgn predicts well or not. By adding
their algorithm to the platform they will be able to compat® predictions with the actual sales
data to determine how well their algorithm performs. Thell also be able to compare the per-

formance of several algorithms to determine their relgtedormance.

3.2 Platform Details

The business intelligence platform is a platform which essoand displays BYU Bookstore sales
data, and provides a mechanism for students to develop adg demand forecasting algorithms.
Using this platform students are able to write algorithre fhredict future sales of products and
see how well their predictions work on real data. There aue fioajor pieces which make up the

platform. Figure 3.1 shows how these four pieces work tagreth
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3.2.1 Sales Database

With our collaboration with the BYU Bookstore we have had asdedheir sales data for the past
four years. This includes several hundred thousand predaat thousands of transactions per
day. At regular intervals the Bookstore sends data files auntathe data for every item that is
scanned for sale, including price, item number, quantitd,stime, register, etc. Currently this
occurs approximately once a week.

The data being received from the bookstore is parsed by atémhscripts and is stored
in a MYSQL database on our servers. Several preliminaryutaions are made on this data
including how many of each product were sold in a day, weekyamth. Each of these preliminary
calculations is stored in a separate table to speed datasacthis data is then made available to

be viewed on the platform or used by students to design defoaecasting algorithms.

Students Design
Forecasting
Methods

Forecasting
Engine

Forecasting

Algorithms User Interface

Bookstore | Bookstore Data

-

Historical Data

DB Copy

|
|
|
|
|
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|
|
|
|
|
|
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Figure 3.1: Architecture of the platform with inputs frometBYU bookstore in form of sales data
and students inputting learning algorithms.

3.2.2 Algorithms

The platform consists of several common demand forecaatgayithms similar to those that can
be found in any introductory course in demand forecastifgyTinclude the moving average, ex-

ponential moving average, and Holt-Winter’s algorithmtud&nts can learn about these demand
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forecasting algorithms and see what makes them effectiveeffective by comparing their per-
formance on any of the bookstore products. After learningtWias already been done, they can
then design their own algorithms.

The algorithms that the students write must be written inldtaand follow a standard

Matlab API shown below in figure 3.2.

result = al gorithmNanme(data, prices, processTinme, forecastHorizon
par anet er s)

data: a tine series array of sales data for a product where each
el ement of the array is the nunber of itens sold for that
time period.

prices: an array the sanme length as data with each el enent
representing the price of the itemduring that tinme period.

processTi ne: the anount of data that the algorithmhas in order to
produce its first forecast.

forecast Hori zon: how nany periods of forecast ahead of the |ast
data point are desired by the caller

paraneters: any other paraneters needed by the algorithm
(exanpl es include weighting factors, etc. that cause the
algorithmto return different results)

result: a tine series array of length

dat a- processTi ne+f or ecast Hori zon where each el enent, $i $,

contains the forecast for the data point in data[i+processTi ne].
The al gorithm should only use data from before that data point.

Figure 3.2: This is the API for a user defined demand foremgdtinction. Following this API
ensures that the platform can call the function, passingéeeled information, and get the results
in a uniform manner.

Once a new algorithm is designed, students can then uplaaid ian algorithm database.
The database keeps track of algorithm properties such asitiieum amount of data required to
produce a forecast, the display name, the Matlab script napt®nal parameters, and everything
the platform needs to know in order to run the algorithm. Oaelgorithm is loaded into the

database it automatically becomes part of the platform. dfleaded algorithm is added to the
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user interface as a possible algorithm to be selected anblesta be run by the platform on

bookstore data if selected.

3.2.3 Forecasting Engine

The forecasting engine executes demand forecasting @ilgariat run time after the user decides
which algorithms to run. This can take some time when mu@tgdgorithms are selected, which
can be a problem, but takes just a few seconds when only aeotiplgorithms are chosen. The
reasoning for executing the algorithms at run time is besaighe large amounts of time and
space that would be needed to run each algorithm on eachgiradd store the results. We do
not expect excessive amounts of traffic on all products s@éischot make sense to make and
store all of the pre-calculations. Another benefit to rugrtime algorithms at run time is that the
performance of an algorithm can be seen minutes after daf@aaded instead of the next day.
One thing that could affect the performance of the platfosnif ifuture algorithms are

designed which take a long time to run. For these algorithmagain-time execution might take
so much time that waiting is not desirable. The platform camjpdated later to incorporate some
pre-proccesing for certain algorithms, and/or productbesE possibilities need to be analyzed

based on the usage of the platform which will be better knoanlater time.

3.2.4 User Interface

The graphical user interface (GUI) consists of a websitéteniin PHP called the retail labora-
tory, www.idealabs.byu.edu/store/retailLab.php. Iba# a student to select any product from the
bookstore, and see daily sales of that product for the mosnhtenonth of data. Figure 3.3 shows
the platform after a student has selected a product via timeiroe the right. The graph on the top
shows how many sales there were each day and the graph onttien Isthows what the price was
for each corresponding day.

On the right side of the GUI is a menu of all of the algorithmsserg in the platform.

These algorithms are taken from the algorithms databas#igplay in this menu. The user may
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Figure 3.3: The user interface of the platform after a prodhas been selected. A product may
be selected on the products menu to the right. First the e$ects a department number, then a
desired product from the list.
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select any number of demand forecasting algorithms to bemuhe current selected product and
click a submit button. This causes the algorithms to be rutherappropriate data and a graph
to be displayed for each algorithm. The algorithm graph shfiw each day what the predicted
number of sales would have been using that algorithm on aatlyflom before that day. Figure 3.4
shows the platform after a student has selected severaithlgs. Students can use this platform

to compare different algorithms, including their own, aed svhat algorithms perform better.
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Figure 3.4: The user interface of the platform after seMe@ining algorithms have been selected
and run. Algorithms are selected from the Learning Algonshmenu on the left, by checking the
appropriate boxes and clicking the submit button.
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3.2.5 Based on a Real System

One of the reasons why this platform is appealing to use thtdacision automation to students
is its tie to a real system. Rather than working with sample adenup data, students get to
look at and work with actual BYU bookstore sales data. Theytgeee first hand many of the
real world complexities that face retail managers. At theedime the platform gives them a
virtual “sandbox” in which to play, where they can be creatand learn about common demand
forecasting algorithms as well as design new ones.

Some of the interesting features found in the bookstoreatatéhat there are large season-
ality trends that are tied to the school calendar. Many itesoth as school supplies have higher
sales at the beginning of the semester. Holiday seasorsaditgo seen in the apparel and gift cate-
gories. Many of the snack items experience a weekly cyclesdls Whese patterns can be analyzed
and planned for as students design their algorithms.

As students come up with good forecasting algorithms aradegjies, the BYU bookstore
has also given the research group permission to run expetsnamd change prices on products
in order to try out their ideas. This makes the businessligégice platform more than just a
virtual test area. The physical bookstore can become paheoplatform for teaching decision
automation. Several promotions and experiments have haesa far, and the potential to run

some more adds to the excitement of using this platform aarthileg decision automation.

3.3 Future Platform Development

As part of this thesis we have created the business intetigplatform. The business intelligence
platform has been developed as a prototype to introducesstsio business intelligence. It has
been designed with revision and change in mind. As a progtyyere are a few extra features that
are being planned for the future. One extra feature is to eetalview more than just one months
sales data. All of the data retrieval, and graph drawing tions have been designed generally
enough to allow retrieval and drawing of any number of presidays. There is an HTML get

variable thatis.setforthe.amount of history to display. Bgroying this value more history can be
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viewed. What remains to be done is to add a control to the aterfo allow a user to select how
much data he or she wants to view.

Many of the products sold at the bookstore have low quastdifesales per day. For ex-
ample paintings, art supplies, expensive clothing itenasivities, etc. may all have many days
where there are no sales or just one sale. In these casesl| as Wwse with more sales, it may
be desirable to view aggregated sales such as weekly saestein, or monthly sales of an item.
These aggregates are already being calculated and staidd the sales database, and there are
functions which are designed to access these aggregasedsateif certain HTML parameters are
set. Controls still need to be developed to allow the useragif§pany aggregates he or she wants
to view.

As of now the Matlab API that must be followed for user definkgbathms allows for op-
tional algorithm specific parameters to be entered. Thisdeéised to allow for different weighting
parameters, seasonality parameters, or other parantedeepply to a specific demand forecasting
algorithm. Currently there is no way designed for a user teretiitese values manually. Instead
they must be hard coded into the database. To run a specifidgthlg with different parameters
another algorithm must be created with different hard cadéaes. For example, for one forecast-
ing algorithm, moving average, which takes a parameter dor long of a window to use, there
will be four different algorithm check boxes for 1 week mayiaverage, 2 week moving average,
etc. For now this is not really a problem, however as more alg@rithms are added to the system
this can become very cluttered, and a way for user entereshyeers may be a better solution.

A final feature that is to be added has to do with the way fotsca® generated. Currently
the assumption that is made for future sales of a producsisnaing the price is held constant to
the most recent price into the future. An improvement wowdddallow the user to be able to set
the price for future predictions. That way the platform abbé used to answer questions such as:
“What would happen to future sales if the price is raised to Xage.” As with many of the other

features a control will need to be added to the user intetfaeaiow the user to set a future price.
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3.4 Conclusion

We have created a platform in business intelligence thatsies on teaching students to use the
learning problem to select models for product demand. Thaigqrm gives students access to ac-
tual sales data from the BYU Bookstore in order to design aridiezaand forecasting algorithms.
Although this is a very different field than portfolio managent, we have shown that the same
decision architecture used to solve problems in portfopibroization can be used to solve busi-
ness intelligence problems. The business intelligenciéopia is enhanced by the collaboration
with the BYU Bookstore tying this learning platform to a realndoproblem with potential for

students’ solutions to be tried in the real world store.

38

www.manharaa.com




Chapter 4

Automated Water Management

Water conservation in the western United States is very rlapt The area is primarily a
desert, with little rainfall. In order to sustain large gitgpulations as well as agriculture, reservoirs
have been built to capture rainwater and snow runoff in theggor use throughout the summer.
Due to environmental regulations reservoir building hadided sharply while demands for water
have continued to increase. Without new reservoirs beiilgriaw ways must be found to conserve
the water currently being stored.

Automated water management is beginning to be used as amtanpwater conservation
technique. By controlling reservoir release more precjsahly water that is needed will be re-
leased from the reservoir, conserving the extra water tbatdwnormally go to waste downstream.
Deciding how much water to release is made difficult becafis®ge and variable delays in the
river, uncontrolled inflows, and various environmentaltdéas, such as evaporation, seepage, or
rainfall.

The problem is how to decide how much water to release fronrebervoir to be used
downstream while accounting for external, uncontrolldbtdors and to minimize any excess re-
lease. The water management platform is designed to salwgtbblem and facilitate a study
in controller design for future solutions to this problemnustlas in the other platforms, system
identification, model reduction, and verification also mhestonsidered in order to provide a good
solution. This chapter focuses first on describing the systebe controlled, then goes on to de-
scribe the process of modeling and controller design toestilis problem. Lastly we show the

implementation of the platform and show how it is designealim~ for many other controller de-
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signs. This chapter comprises a collaborative effort vilhBureau of Reclamation in managing

the Piute Dam on the Sevier River.

4.1 Sevier River

The Sevier River, in central Utah, serves primarily as itiggawater with a small amount used
for municipal water in the local towns. The Sevier River Basisompletely enclosed so that any
water flowing down the river empties into the desert. Thed”Dém and reservoir are located
on the upper portion of this river. Water released from tls=reoir may be diverted into one of
several canals. Any water not diverted into the canals nae8 down the river and is lost for
any other use. This makes the Sevier River a great locationaittipe water conservation using
automated control. Water can be conserved by designingisiaealgorithm which releases just
enough water from the reservoir so that every canal gets #terw needs, but no more.

Figure 4.1 shows the stretch of river below the Piute reserite release from the dam
determines how much water enters the system. There is alsocamtrolled, but measured inflow
at Clear Creek, and eight diversion canals that take waterfabeaiver. At the end of the river is
the small Vermillion Dam. The goal is to have no water flowiragipVermillion Dam as it will be
lost to our water users.

Each black circle in Figure 4.1 shows where there is statieasuring flow. Each of the
stations on an out-flowing canal also actuates a gate whighates the flow to match a flow value
set by the canal owner. There are also four measuring ssaiong the river, the reservoir release
(not shown), just above Clear Creek, near Elsinore, and atiMlamDam. Flow data is collected
at all of these stations every hour and stored into a cenatalbéhse. This remote monitoring and

telemetry has been installed in the system since the sumin2€00.

4.2 Other Work in Canal/River Automation

The majority of the previous work in canal/river automati@s been focused on obtaining accurate

measurements, of the canal/river and manually controlliateg remotely. Few rivers or canal
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Figure 4.1: A stick figure representation of the centraltstr®f the Sevier river. The water flows
from top to bottom. The water entering the system is detezthlvy water released from the dam
and the measured but uncontrolled inflow at Clear Creek. Aflaus are measured and controlled.
A small metal gate called Vermillion Dam represents the drti@system and any water flowing
over the dam is lost downstream.
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systems in the world have a computer determining how to obtite gates releasing water from
various reservoirs. This is mostly due to the fact that wigtsuch an important resource, and many
people are skeptical about having their livelihood comdbby a computer. There are however, to
the best of our knowledge, only two groups that have had ssdoecontrolling rivers and canals:
one in southern France, and one in Australia.

The group in southern France (Litrico, Malaterre, et. ah$ designed various algorithms,
including robust control and proportional-integral (Ply@ithms, to control gates on different
canal systems [17], [16]. They have also done some work veittakmodeling using St. Venant
equations for water flow [20]. The group in Australia, led ykBVeyer, has modeled canals using
a mass balance model and designed several different densroicluding PI, and linear quadratic
Gaussian control (LQG) to control canal gates [28], [29].

None of these approaches work very well with our system.t,Rine work has been done
on canals that have a very small grade and accurate flow negasots. The flow measurements
on our river are not very accurate and may be off by as much &s Jlso our river has steep
grade which causes the water to flow more quickly than thelsamaich changes the system
dynamics. Second, the delay in our stretch of river is oveayaathd we receive data only once an
hour. Previous work has been on canals with much less dethgata collection every second or
minute. Third we have no control of the water after it has tleé reservoir except for the water
being diverted into the canals. Previous work has reliedamtrol structures along the canal/river
to control the flow. Because of these differences we will begigifferent models than these

groups.

4.3 Modeling the river

4.3.1 Selecta Model Class

The first step in modeling the Sevier River is to select a moldsisathat captures the dynamics of
the river. In [22] Maxwell compares several different madef the Sevier River. He concludes

that.a.parameterizedmass.balance model most correctlyiltesthe river during summer months
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when there are high flows. We select a parameterized massceatodel as the basis of our
model class, however we add to that model terms for a thirdragnamical system. This allows
the model to also capture some of the smoothing effects céndtmiw that are absent using only
the parameterized mass balance model. The rest of thissewili describe the development of a
new model for the Sevier River using this new model class.

We model the Sevier River as a multiple input single output3®) system with the flow
past Vermillion Dam being the system output. We treat therivar inflows and the eight outflows
to the canals as system inputs because each representearakiifluence on the water in the
river. Since the outflows of the river are measured, theicexalue is known and the coefficients
to these system inputs will be fixed at negative one. The reasgative one is used is because
water is being taken out of the river. Because the influendesoiiflows on the output is uncertain,
we let the coefficients to the inflows be variables to be detezthfrom our learning algorithm from
the data. This allows the model to account for evaporatieepage, or other inflows or outflows
that may occur along the river before the water reaches ttierbaf the system. Equation (4.1)

shows the mathematical model of the system.

10
y(k) =ary(k—1)+...+agy(k—3) +bius(k—d1) + boup(k—dp) — Zui (k—dh) (4.2)

Our model (4.1) states that the output at tikng/(k), is determined by the previous three
outputs as well as the positive and negative flows added bgytstem inputs. We define inputs in
the order that they affect the system,as the reservoir release; as the inflow at Clear Creek,
andug,...,uip as the other canals. We also defthe(i = 1,...,10) to be the delay of the river

from inputi to the end of the river.
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4.3.2 Determining the Delay

To determine the different delays in the system we look atdltnem two points along the river.

We find where there is a large shift in flow at the upstream pandtfind how long it takes for there
to be a corresponding shift in the flow at the downstream pdihe reasoning for this method is
that a possible experiment to determine the delay would ke tolarge amount of water out at one
time and measure the time it takes to reach the next partgUita from 2007 we found several
places in the data where there were large fluctuations in ohedhd averaged the delay time to
find different delays in the system. A sample of this techaigushown in figure 4.2. To find the
delay of the canals we use the same technique, however wddogitaces where the upstream
river flow is constant, the canal has a large shift, and thendawam shift is in opposite to the

canal flow see figure 4.3.

2007 data for srps and srcc used to determine delay (about 13-15 hrs)
360 F Sevier River Piute -
Sevier River Clear Creek

340

320

flow in cfs

300

280

260 .

2400 2420 2440 2460 2480 2500
hours starting at april 1st

Figure 4.2: The delay for the stretch of river between themeasr and Clear Creek is found by
finding corresponding changes and measuring the delay.

It must be noted that the delays we find using this method greoapnations or averages
of the actualdelay-As the.amount of water flowing in the rinereases the flow will be faster and
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2007 data for svpc and sre used to determine delay (about 3 hrs)
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Figure 4.3: Finding the delay of a canal. The upstream riveonstant, the canal reduces the flow
it is taking out of the river and the downstream measurenedtgats an increase in flow.
there will be less delay for the water to reach the bottom. gpyeosite is true if there is less water
flowing. When we validate a control solution we will need tosttbat it is robust to differences
in the delay of the river.

Using this technique we determine there is a delay of apprately 14 hours from the
reservoir to the Clear Creek inflow. There is a delay of anot@ehdurs from Clear Creek to
Vermillion Dam. This is a total of about 32 hours for the emtstretch of river. Table 4.1 shows

the delays for each part of the system.

4.3.3 Selecting Data

Since water conservation is most important during theatran season we want our model to be
effective in describing the river during spring and summenths. We will use river data during
the months of April through September for six years (200042006) to train our model, and we

will use data from those same months for 2007 and 2008 toatalidur model. We choose not to
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Table 4.1: Symbols and delays associated with severabssagilong the Sevier River.

| Station Name | Symbol | Delay |
Piute Reservoir srps 32
Sevier River above Clear Creek srcc 18
Clear Creek ccd 18
South Bend Canal sbch 16
Sevier Valley Piute Canal svpc 15
Joseph Canal jch 15
Monroe Canal mch 14
Brooklyn Canal bch 13
Elsinore Canal ech 12
Richfield Canal rch 12
Sevier River near Elsinore sre 12
Anabella Canal ach 8
Vermillion Canal vch 0
Sevier River at Vermillion Srv 0

use data from the year 2005 because that year was a flood yktreaflows are unlike any other
year. When that year is used for training it causes the mogektdict too much water for the other
years. It is possible to use 2005 data to learn a model whiclbeaised in flood years, though we

have not done that here.

4.3.4 Model Selection

To select a model from our specified model class we use arivieraaximum likelihood mini-
mization method to select model parameters for our modeak Miethod minimizes the error be-
tween the model’s predicted output and the actual output fitata. We start with an inital model
and then adjust the model’s parameters along a specifictidineio decrease the error. For more
information see Matlab’s system identification toolbox almentation, specifically the commands

pim and armax.

46

www.manaraa.com



Using this method along with the specified data and modebkgclas find the following

parameters for our model:

a1 [-.7949)
a —.4595
az| = |—.1705| . (4.2)
by 839
| | 1973

These parameters seem reasonable as both of the inputsdsatieepcoefficients. Also the larger
coefficient from Clear Creek could be explained by it being aregulated inflow. This inflow
could represent all other unmeasured inflows along the videch would seem to be higher if
the creek is higher and lower otherwise. The coefficienttleas one from the reservoir could be
explained by the effects of evaporation and seepage of tbased water all down the river.

Using our model (4.1) with the parameters found in (4.2), eue @se actual data from 2008
as the inputsuy, . .., u10, and see what our model predicts the output to be. The clbsanbdel
output is to the actual river flow, the better our model repnés the true river system. Figure
4.4 shows the model’s predicted output compared with theshoutput from 2008. Flows in the
model output are negative in order to show where our modeligieea shortage of water in the
system. This means that the last canal would not be gettinguat as was ordered. This will be
discussed further in a later section.

Because this model seems a bit too erratic we add a low pasgdilbeir model output to
smooth out model flows at Vermillion dam. We select the filtargmeter which minimizes the
mean squared error of the model compared to the validatiof ke filter parameter of .1 gives us

a reduction in root mean squared error from 21.8 to 21.1 iglthe filter

x(k+1) = .9048(k)+.095161(K)

y(k) = x(k)

47

www.manaraa.com



Initial Validation of the Learned Model with Actual Data from 2008
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Figure 4.4: Estimated output of the original learned mod#hut low pass filter) with input from
2008 measurements compared to the actual river output i®. 20k low pass filter will be added
to reduce the noisiness of the model.

and a final model of

x(k+1) = Ax(k)+Bu(k)

y(k) = CxKk) (4.3)
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where

—0.7949 —0.4595 —-0.1705 0
1 0 0 0
A —
0 1 0 0
0.0952 0 0 09048
0.839 1973 -1 --- -1
0 0 o --- 0
B - )
0 0 o --- O
0 0 o --- 0
C= 10001

Handling trends in the data

In order for our learning algorithm to select model paramseteith greater accuracy it was nec-
essary for us to detrend the data by subtracting the yearyhrogeach signal from itself. When
running this model on-line during a watering season it ispussible to subtract the yearly mean,
so we need some other way to detrend the data. We decide te asteemd the weighted average
between the current year to date flows and the average fropreadious years except for 2005.

The trend for a signad at timek is

_ YK se(i) + D

Tk D+k-1

(4.4)

wheres(i) is the flow at timd for the current yeal) = max(3000— k, 0), andpiy is the mean of
the output for the previous years. After 3000 hours the tteembmes the current year’s average,
and before 3000 hours, previous years’ average is included.

The reason we do not use the current year to date averagerftread is because water

flow varies greatly during the season. During the beginnfrige@season the water flow is high and
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during the end of the year the flow is lower. Using the curreetage as the trend will cause the

early part of the year to be shifted by larger trends tham latthe year, thus adding a downward

trend to the data which is undesirable.

4.3.5 Model Validation

Figure 4.5 shows the output predictions of our model for thieation set. The top graph is 2008

data and the bottom graph is 2007 data. Table 4.2 shows tb&ugband root mean squared errors

for both years and together.

Model outflow prediction compared to actual outflow for 2008
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Figure 4.5: The model output compared with the actual outpap is 2008 data bottom is 2007
data.

50

www.manharaa.com




Table 4.2: Error of Model on Two Validation Sets.
| Year | Root Mean Squared ErrgrAbsolute Error|

2008 21.67 15.30
2007 13.37 10.62
Both 17.80 12.96

The model definitely captures many of the trends and chamgdsoth years, but also has
periods where its predictions are off especially at the ti@igg and the end of the season. One
limitation on performance is the reliability of the flow measg devices. The measurements of
flow are rated to be within 10% of actual flows. For the flows as tiver that can easily be 5to 10
cubic feet per second. Over several canals this can makgevariance. Also, when flows are at
zero or close to zero the sensors can still read “false” flawestd sediment build up in the sensor.

One of the reasons for some of the error is that we allow theeiimdpredict negative
values. The river cannot have a negative flow, but a negateeigiion is the same as predicting
a shortage for the last canal. Thus a flow of -10 cfs meanshledast canal has 10 less cfs than
ordered. Because we do not keep track of how much water waredrtte each canal, it is difficult
to determine how much shortage there was in the river whefildhewas at zero. So, when the
river is at zero and the model predicts some negative vahgeneégative prediction could be close
to the actual state of the system.

There are a few possible explanations for the model’'s podopeance at the beginning
and end of the season. At the beginning of the season many chiials are not being used and
have a flow of zero but because of sediment the sensors maycbrdliregy one, this can cause
unusually large errors. Also, some of the canals turn ofbteethe end of the season which could
contribute to large errors at that time as well. Typicallyrencainfall occurs at the beginning and
end of the season, this would cause more water to be entéengystem at those times. Another
explanation for the error could be temperature which hasatgmpact on evaporation. During
the beginning and end of the season the temperature is evablg lower than the middle of the

season.
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We feel that with the errors it is still a good model for peaksm, especially given its
relative simplicity. Even when there is some error the mati#lcaptures the trends and seems to
be off by a constant factor. This leads us to believe that wieb&iable to control this river and

that feedback control can improve system performance.

4.4 Controller Design

The objective of the controller for the Sevier River is to seke reservoir releasey, in order

to cause the output to match some desired reference sigmathé@Sevier River the goal is to
minimize water waste while meeting all of the canal demandsis, the reference signal for the
output of the system will generally be set at some small ammouzero, and stay constant the
majority of the time. The controller will then have to decidew much water to let out so that

water is delivered to the canal but the outflow at the end resiaiv.

4.4.1 Control Architecture

For our controller design we are going to use the two partrobatchitecture shown in figure 4.6.
The first part of the controller is a feed forward controllErig the figure). It uses any a priori
information that we have available in order to determineoaelestimate of what the control input
should be. For the Sevier River this information includesréference signal as well as future
water orders for the canals. The second part of the contnslithe feed back controller (K in
the figure). This portion of the controller uses error frora fystem output in order to ‘fine tune’
the estimates from the feed forward controller. The planin(Ehe figure) is the system being
controlled. In our case this is the river system.

This control architecture is very versatile. It divides tmtrol into two very manageable
pieces. One piece controls for the system the best we uaddrgf and the other piece controls for
the things that were not designed for by the first piece. Tiuisigecture also lets us take advantage
of the data we receive from the water orders for each canalsathat information in determining

future water release.
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Figure 4.6: The control algorithm is split up into two piec&se feed forward controlleF, uses
all available information to get an approximate controliceou. The feedback controlleK, uses
the errorg, to adjust the approximation lgu.

This architecture also can be very useful when designingaiters for non-linear systems.
Often when trying to analyze non-linear systems we makedkaraption that the non-linear sys-
tem behaves like a linear system in a small neighborhoodlasito the idea that if you get close
enough to an edge of a circle it appears to be a line. This sléarther justified for analytic
functions by looking at their Taylor Series and noting thab$Se enough” to the evaluation point,
the linear terms in the series dominate all the others. Bygdesjy the feed forward controller to
get close enough in controlling the non-linearities of thenp a linear feedback controller can be

sufficient to achieve acceptable performance.

4.4.2 Performance Criteria

We expect the reference command to change in a step like mamue the desired flows for
the end of the river stay constant until a new flow is set. Socth@roller will be required to
asymptotically track step changes in output. Due to theeldegays in the system it will be difficult

to have fast tracking, but we want to make sure that we eviyntget to the right value. Canals
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also change in a step-like manner so we will require asynapt@cking of step changes in the
canals.

In addition to being able to follow changes in the river oraarwe also want the controller
to be robust to situations when the river behaves diffeyeththn our model predicts. While we
expect our model to be descriptive of the behavior of the rive know it can never be 100 percent
correct. We want our control performance to be robust toriemb parameters in our model. The
performance must also be robust to differences betweenedlag eve use in our model and the
actual delay of the river.

Finally, we desire our controller to reject disturbancekisican include noise in the mea-
surements, external disturbances such as rain or high tatopes, and sudden changes in canal
flow without making appropriate orders first. In light of teedisturbances the controller should

maintain or return to reference flow.

4.4.3 Feed Forward Control Design

As stated before, our goal in designing the feed forwardrodiat is to get the output to track the
reference as closely as possible. In order to asymptatit@tk step changes in the output, the
final value of the output needs to be equal to the referencenzord. We will choosé& to be the
inverse of the final value of the plant. This suggests that eté s= P(1)~1, whereP(1) is the
discrete time transfer function of the plant evaluated atl, which gives the final value of the
plant. Now we show that this value férgives us asymptotic tracking.

With only the feed forward controller the open loop trangterction fromr toy is
y=P(2)F(2)r (4.5)

The final value theorem states that the final value of a timetfon x is the same as the

limit of its laplace transform evaluated at&; lictt) = Iiml(z— 1)X(2).
00 z—
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Applying this theorem yields

y=P(2)F(2)r (4.6)
lim y(t) = lim (z— 1)P(1) + P(1)Lr (4.7)
tliﬂly(t) =r (4.8)

Thus for this selection df we have a controller which is both stable and meets our pegoce
criterion of asymptotic tracking.
Since the model we developed in the previous section is thidea we have for the plant,

we use that model to determifle= P(1) L. The transfer function for our model (see (4.1)) is

.09527
"= (z—.9048(z+ .533) (2 +.261%+.3199 (4.9)

Applying the final value theorem to the model yields a finalreadf .412. We then Idt = ﬁ =

N

2.426. Figure 4.7 shows the open loop system response to andtieg ieference command using

thisF.

Feed forward step response with F as inverse of final value of plant
12 T T T T T T T

River Output
~~~~~~~ reference

10_ .......................................

Flow in ft’/s
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Figure 4.7: Open loop system with the feed forward controllée plant is the model developed in
the previous section and the feed forward controller has gqual to 2.426. The system is stable
and tracks steps in the reference command.
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The feed forward controller also receives the water orders the different canals. It uses
these orders to predict what will happen to the canal inputhe plant. From (4.3) notice that
the inputs are each multiplied by a gain and added to thergyskais controller takes each canal
order and multiplies it by the inverse of the gain from the eaghd subtracts it from the control
input. This has the effect of changing the reservoir releasly, by the same amount that the input
will affect the flow in the river later on. We will show how thigorks in section 4.5, controller
validation.

As figure 4.7 shows, the feed forward controller performgy/ weell when the plant is the
same as the model we used in designing the controller. Unfatély, but as expected, the feed
forward controller is sensitive to errors between our mauohel the actual river. Figure 4.8 shows
a possible response of our system for a case where the rigiieisent from our model. When the
river behaves differently from our model the final value & #ystem does not match the reference
command. The system still maintains stability, howevenpitanger has asymptotic tracking. This
motivates the need for the feedback controller.

Feed forward step response with Plant different than designed model.
T T T T T T T
10 B

River Output
reference

Flow in /s

0 ! ! ! ! ! ! ! ! !
0 20 40 60 80 100 120 140 160 180 200

hours

Figure 4.8: An example of the possible error in the open lomtesn when the river is different
from the model we used to determine our feed forward comtrollThis shows the need for a
feedback controller.
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4.4.4 Feedback Controller Design

One of the important parts of our platform is the fact that yndifferent controller designs could
work for the feedback controller. Because our performangairements require us to asymptot-
ically track a step input we need a controller with an intégraln this section we will design
a proportional integral (PI) feedback controller, howeatrer optimal controllers could also be
designed including, LQGH, L1, etc.

The PI controller we have designed will be a controller offthren

ki

K =kp+ zT (4.10)

whereky, is the proportional constant or proportional gdinis the integral constant or the integral
gain, andz is the discrete laplace variable. These two gains must kefuilyr selected in order
to achieve the desired control performance. If the gaindardiigh our controller may become
unstable. If they are too low, the controller will not achedhe desired results.

We follow a standard process for selecting these two gainst, Bve hold the integrator
gain constant and adjust the proportional gain and checkyftem closed loop response. This will
determine in large part how fast our controller responskb&il The higher the gain is the faster the
response will be, but also the more overshoot there will be cavtinue adjusting the proportional
gain until we achieve the most desirable response. Aftecialh a decent proportional gain, we
keep it constant and adjust the integrator gain. This gamapily affects how fast the system
reaches steady state. However, as the gain increases tdg thacsystem will also experience
more overshoot.

While adjusting these gains we also have to pay attentiong@é#in and phase margins
to determine how close the system is to loosing stabilityatbmargins signify that the system is
stable but if there is very much uncertainty, the system wightrue plant may not be stable. The
gain margin is a measure of how much the system gain can setsefore the system becomes

unstable. The phase margin is a measure of how much shiftaseph system can take before it

57

www.manaraa.com



becomes unstable. The phase margin is also related to systeéimdelay. The more delay there

is in a system the more the phase will shift, and so the moreehmargin is needed. Since our

system has large delays, we need to design our gains sucbhuhphase margin is sufficiently

large. We can increase the phase margin (and gain margirgdrgasing the gains.

The result of our gain tuning process result&in= 1 andk; = .05. The bode plot in figure

4.9 shows that we have a gain margin of 2.69 and a phase ma38 degrees. These margins are

sufficient for the closed loop system to be stable even wighdige delays in our system. Figure

4.10 shows the step response of the closed loop system mioigténe plant with our feedback and

feed forward controllers where the plant is as we have maddele

Bode Diagram
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Figure 4.9: The closed loop bode plot of our system showsabkdtave a gain margin of 2.69 and
a phase margin of 139 degrees. These are sufficient marginsbiast closed loop stability.

It is important to note that the delays we measured when mibtaiour model were just

estimates..Not.only.may.they be incorrect, but they may ceatgpending on how much water
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Step response to change in reference from 0 to 10 cfs (correct model)
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Figure 4.10: The step response of the closed loop systembweith feed forward and feedback
portions of the controller.

is flowing in the river. The more water there is the faster tlaenflows and the less delay there
should be in our system. Conversely, the slower the water fldvesgreater the delay will be.
Because of this uncertainty, we need to be sure that the clospdsystem is still stable if the
delay in the river is different than we modeled. Figure 4.4dves the step response of the closed
loop system with eight hours more delay and eight hours lelsydEven with these extreme cases
the closed loop system is still stable. With more delay tieep@orer performance of the controller,

however if there is less delay the controller performs bette

45 Controller Validation

In the preceding sections, we created a model for the Seviar Rnd designed a controller to
control the reservoir release. We have shown that the dedigontroller is stable for differences
in delay and has good nominal performance in tracking a siegti By nominal performance we
mean performance on the system as modeled not taking intacmaccuracies in the model. In
this section we are going to show that the controller remsiable even with inaccuracies in the

model,called robust.stability. We will also show the robpstformance of the controller, which
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Step response of CL system with different delays
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Figure 4.11: Closed loop sensitivity to delay uncertaintyhé river has more delay than modeled
the performance is worse but the system is still stable. W&k delay the performance is actually
better.

is that the performance of the controller remains acceptaiih disturbances and inaccuracies in

the model.

4.5.1 Stability and Performance With Disturbances
Step Disturbance in Canal Input

The first type of disturbance to consider is if a canal suddeakes more water than is ordered.
This can happen because of an inaccuracy in the order or tied oeeasurements. It can also
happen if the true impact of a canal input on the river flow is419 but some other value. This
would mean that the parameter for the canal input is incarfégure 4.12 shows the river output
at steady state flowing at 10 cfs. At 100 hours a 10 cfs stept itgpa canal occurs. This canal
disturbance has no order attached to it and so there is noavapd feed forward controller to

compensate for the disturbance. There is a delay of 20 haiosdthe disturbance affects the
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river output. At that point the controller begins to make rdpas but the river flow continues to
drop for 32 hours since it takes that long for the changesaohr¢he end of the river. From the
time the changes start to affect the river output it takes@pmately 35 hours to correct back to
within 10% error of the reference.

Output of the river in response to a step disturbance in a canal

10 e LSS
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8r NS Canal Output| -
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Figure 4.12: The river output in response to an unmodeledd 8tep input in one of the canals
with delay 20. The disturbance is attenuated by 60% and eaytreturns back to zero steady
state error.

The performance of this controller at rejecting disturkesnin inputs seems disappointing,
over 100 hours to correct from a step disturbance. While shiow there are several good results
of this performance. First, stability is maintained in tlmatoller. Second, the disturbance in the
canal was 10 cfs, yet the error in the outflow was mitigated @6 Third, this is an extreme
situation where the disturbance was held out indefinitelgudlly when canal operators make
errors in the order it is corrected within a day, which wouddidthe performance of this controller.
Finally, this response does not use the feed forward patieotontroller because we assume for
a worst-case scenario that the canal operator may not chbegeder. Once the canal input was
changed from the order, the order could have been autorthatipaated, which is how the system

operates underhormal.conditions unless a manual ovesideade by the canal operator. This
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would still have caused some error but the feed forward gahteocontroller would have kicked in
20 hours before the error was noticed at the end of the rivéndyeedback part of the controller.

This would have dramatically reduced the final disturbance.

Incorrect Canal Delay

The next disturbance to validate is if the delay of a canahereictual system is different than we
have previously modeled. To perform this validation the satep disturbance of 10 cfs is going
to be given to a canal with supposed delay 20 hours. This tieetwill be an associated order 20
hours ahead and the actual delay for the river will be varftéglure 4.13 shows the river output for

the canal delay being off by two and four hours.

Output of the river with an anticipated canal change but incorrect delay.
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Figure 4.13: Shows the closed loop sensitivity to delay taagy. If the river has more delay than
modeled, the performance is worse but the system is stillestaVith less delay the performance
is actually better.

The controller still maintains stability with this distiabce and the errors are only outside
of the acceptable error of 10% (as stated above, measurearendnly accurate to about 10%) for

a few hours with the 4 hour discrepancy, and not at all withizheur discrepancy.
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Sensitivity to Input and Output Noise

High frequency white noise is not too damaging to the systarfact we have assumed that many
of our measurements are going to have noise on them. Figldeshows the output of the system
when noise is added to the input and the output. Input noiaddgd to the reservoir release and
is shown in the top graph. Output noise is added to the outmasorement and is shown on
the bottom graph. The noise is added to a simulation with @ iseut at time zero and a step
disturbance on a canal at time 500.

Because of the large delays in the system and the slow respbiigecontroller, it is unable
to correct for noise in the system. It takes 32 hours for ckamgthe input to be seen at the output
so reducing the noise which can be changing every hour, ipaggible. We can see from figure
4.14 that the closed loop system maintains stability withrthise. General performance does not
seem to be slowed down much due to the noise. The rise timenardisturbance rejection do not

take any longer.

4.5.2 Simulation on 2008 Data

As a final method of validating the controller it will be tedten the true river data for the summer
of 2008. The desire is to validate whether the controllera@sstable and meets desirable control
objectives with noisy data. Another goal is to say what thetrasier would have done if it had
been running in 2008 and how much water it would have savetweShere is not any order data
for 2008, we use the actual amount of water that was flowingbtlie canal as its order. Under
normal canal operation this should be within our measureéereor of what the actual order would
have been. We then give that order to the feed forward coetneith enough advance that it can
make any changes it needs. Figure 4.15 shows how well theatienpperforms when we enter the
actual outflow as the reference command to track.

The controller is able to track the actual reference commarg well, better than the
model alone predicted the output to be, see figure 4.5 top.t thexcontroller was run with a

reference command of one cfs, and again with a reference eochof five cfs. Figure 4.16 shows
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Output of the river with input noise compared to the output without noise
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Figure 4.14: Top: Output of the system when white noise i®ddd the input, compared with the
output of the system with no noise. Bottom: Output of the sysiehen white noise is added to
the output, also compared to the system with no noise.
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Shows how well we can get our model to match 2008 output
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Figure 4.15: Controller output when run on 2008 data with @ctiver output as the reference
command to track. The controller is able to match the outpuy well. Orders were taken from

the actual canal inputs, which mimics how under normal dperaanal inputs are made to match
the water orders.

the output of the controller with each reference signal,aed blue respectively, as well as the
actual river output in green.

From figure 4.16 it is easy to see that the controller wouldel@nserved water compared
to the actual flow in 2008. The controller also shows the valuthe water going negative. This
represents not enough water being let out of the reservdiraashortage to the last canal. This
is not desirable. In fact, it may be more desirable to wastétla more water in order to not
have a water shortage. One way to do this would be to incréaseeference command until the
controlled output goes below zero only some of the time. 848 shows the different amounts of

savings and water shorted by running our controller witlywey reference points.

4.6 Platform Implementation Details

In this section we describe how the automated water managgoteform is implemented. Up
until now the focus has been on creating a model of the rivdrdesigning a controller for the

reservoir gate. This is the work that must be done by a studesrtier to use this platform. Once
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Shows how our controller would have output if it were run in 2008
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Figure 4.16: Actual river output (green) compared with egsbutput with the controller actuating
the reservoir release. The controller was given a refersiggal of 1 cfs (red) and 5 cfs (blue) to
try and maintain. The controller saves water but also mageaucanal to not get enough water
because it goes below zero several times.

Table 4.3: Shows the amount of water that could have beenl sangthe amount of water shorted
to the last canal, if we would have run our controller in 2088.values are in Acre Feet. As the
controller tries to hold the river release closer to zero axegnore water but we also tend to not
let enough water out some of the time.

| Reference CommandWater Saved Water shorted (Less than zerp)

r=1 6514 AF 650 AF
r=5 5508 AF 312 AF
r=10 3985 AF 140 AF
r=15 2375 AF 55 AF
r=20 716 AF 20 AF
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the controller is created it can be inserted into the platfahich will implement the controller on

the reservoir.

4.6.1 Platform Architecture

The architecture of the platform contains three pieces mwark together to control the reservoir,
and also the gates on the canals. The first part is the on liter weder form. This form allows
canal owners to go on line and enter the future orders for taials. These orders can then be
used by the controller as explained above to make a feed fdrestimate of the needed control
input. Also when the time for the water order comes up thefqiat can actually move the gate to
the appropriate place just as it does for the reservoir.

The second part is the implementation of the controlledfits€he controller is imple-
mented in Linux so that it has access to the database of watersoand current river flows. It has
been implemented as described in the previous section tis@ERL language and it uses Perl’'s
DBI to access the database. Once it calculates how much watgrdut of the reservoir it writes
the value to a file to be used by the third part of the platfortraldo writes to the file the most
current order for each canal so that those gates can alsa.be se

The third part of the platform is a program that constantlysron a windows server. The
windows machine has a shared folder with the Linux machinkiawaits until the controller file
appears there. Once it sees the file it opens it and then wsé&thof a third party software called
Loggernet to communicate via radio to each station site tohgeflow for each gate. Each gate
including the reservoir gate has a local controller whictomatically adjusts the gate up and down
to match the desired flow set by the platform. Loggernet omhsron windows which is why this
third part of the platform is on windows.

One major benefit of this three part architecture is modiylati allows us to completely
replace the controller with a new design or implement it ireavtanguage without changing the
rest of the platform. As more students use this platform ttayjust focus on the controller design

and not have to worry about communicating with the stations.
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Each student who creates a controller can just set up thetrailer to run on the Linux
machine via a cron job every hour. There they have accesbpasldata and future water orders.
Their algorithm needs only to output a text file with the amtcafrwater to let out of the reservoir
(in cubic feet per second) and the platform will handle etleng else. Of course before any
student can insert their control algorithm there must béceit testing to ensure that it will work

on the real river, just as we have shown above with the cdatrdésign in this thesis.

4.6.2 Communication to the stations

Loggernet software handles the communication betweeneheisand each of the stations on
the river. This communication travels via ethernet to a datianear Richfield, then from there
travels by radio to the different stations. These radio comigation channels present the single
most challenging part of making the platform functional.eTfadio channels can be very noisy
and are not very reliable. It can take a long time to connedtaorsmit data and the signal can
be dropped entirely. Also the entire system of stations igusha couple radio frequencies. If
someone is using the frequency to change a station’s flonaarite values then the platform will
not be able to connect to any other station on the same fregu&his can become more serious
when someone forgets to log off and keeps the line tied updars

While communication errors are still present, much care leas baken in the platform de-
sign to mitigate communications problems and increasedinegility of the system. The platform
is designed to only call out to the stations once per hour tkenmeeded changes. This reduces
the traffic on the radio frequencies during the rest of thestimhhe platform also is designed to
make all the needed changes on the canals so there should aoiged for other people to use the
communication channels as often.

Before it makes any communications with the stations, th#gsta checks to determine
whether there has been a significant change in the order éocdhal or reservoir release. A

significant change is .25 cfs for a canal and 2 cfs for the veseif there has not been a significant
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change, it will not call to make a change. The only commurocaiking place is for those stations
where there is a significant change.

When the platform actually does need to make a change it wéitsgatime for the com-
munication to be established. If communication fails ithgilit all communications and wait for

30 seconds and then try again. After three separate trigl give up until the next hour.

4.6.3 Security and Reliability

Because water is the livelihood of those who are served byetbervoir, great care must be taken
to make the system secure and reliable. If the system fadléilure must be recognized in time
to minimize the damage. If a farmer looses water for a few day<rop for the year could be
ruined. This danger causes many of the water users to basMdptallow the platform to control
the reservoir and the gates.

The on line water order entry form uses SSL encryption andsavpard system to ensure
the identity of those using the system. Those who use themsysiust have their account manually
verified and be given access to each canal they are to be atdati@l. Users are not allowed to
see any canal that does not belong the them.

If at any time the platform has trouble making a change on alaganthe reservoir then it
will send an email notification that there is a problem. Thegmill then be forwarded via short
message service (SMS) to the administrator’s cell phonat Way someone knows immediately
and can evaluate and fix the problem. Possible causes of ¢ness could be communication
error, a software error, a file read or syntax error, or evealarm if the flow is outside of some
prespecified range.

As a guaranteed fail-safe, every station is equipped withflags that must be turned on for
the platform to control the gate. If at any time the platformstbe discontinued for an emergency
reason one can simply change either of the flags. The firstAldgOMODL, must be set to 1
otherwise the platform will not attempt to change the set.flblae second flag, AUTOGATE, must

be set to 1 otherwise the local control will not try to move fate to the set flow. Having these
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fail-safe flags means that in the worst case scenario onausatuyn those off and move the gate

manually.

4.7 Conclusion

In this chapter we have designed a learning platform for wasmagement. This platform includes
all of the applications and software necessary to make ava@sgate control algorithm move the
corresponding physical gate. This platform is designed wag that any control algorithm in
any language may be used, provided that it can access tHeadatar his allows students to design
control algorithms and try them on the actual river, proditiet their solution has been sufficiently
tested and verified.

We have also used the decision architecture introducedaptehone, to design a control
algorithm to be used on the Sevier River. We modeled the rsi@gua parameterized mass balance
model, and verified the model with actual river data. We de=iga two part controller with
both feed forward and PI feedback controllers. We showetithis controller design is robust to
modeling errors, noise, and unmodeled disturbances, abthiéh controller design is likely to have

saved a significant amount of water during the 2008 irrigesieason using 2008 data.
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Chapter 5

Conclusion

At first glance portfolio optimization, business intelligee, and automated water manage-
ment might seem like completely separate problems in thifeeht fields. However, all of these
problems have several things in common. They are all prabléat can lend themselves to study
in decision autmation. Each problem relies on making irggetit decisions from data. In doing
so their solutions handle information in similar ways anelgialgorithmic decision processes. Fi-
nally, each problem is simple to understand but difficultdlys. Good solutions to these problems

are actively being researched and developed.

5.1 Decision Architecture Applies to Each Problem

We have introduced a decision architecture which levertgese similarities and breaks each of
these problems into four smaller problems that work togetiv@roduce an algorithmic decision
process. These problems are the decision problem, theidgaonoblem, the model reduction
problem, and the verification problem.

The decision problem focuses on making the best decisioadbas a model of conse-
guenses for each decision and an objective function whigs @ossible consequenses. In port-
folio management the decision is to determine which saearghould be purchased in order to
create a portfolio which will have the most value after a@eramount of time. In the business
intelligence problem the decision is to set the price at Wwidicsell each product in order to maxi-
mize profit. In the automated water management the decisitmrelease enough water from the

reservoir to meet water demands without letting out any €xeeter.
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In the learning problem a model of possible consequensdsosen from a model class
using historical data and a measure of quality. These madels contain varying amounts of
uncertainty, which may affect how the decision problem Iges In portfolio management models
are learned in order to predict future values of securitMadels in business intelligence predict
future sales of each product. In automated water managenuatdls are used to predict the effects
of released water on downstream flow.

Each problem area may be complex enough that models useddioning and decision
making may not be able to be computed. The model reductioplgmrofinds simplified models
which are still accurate and lend themselves to be computty tractable. In portfolio man-
agement the number of stocks being considered must be eedoiceome models. In business
intelligence model parameters must be reduced by limitegriumber of products whose prices
influence another product’s price. In automated water mamagt the physical system is so com-
plex that a simplified model must be designed to capture ths mmportant dynamics of the river.

The verification problem involves designing experiments tiest the decision process in
order to show the quality of the solution. Each solution setedbe verified to determine whether
there is evidence that the solution does not perform asetesiFor portfolio management this
can be done by comparing two different decision processas wonline trading platform such as
the Tour de Finance. For the business intelligence probledigted quantities sold of a product
can be compared with its actual quantities sold. For autedhatiter management past water data
can be used to validate a water management algorithm to anteag shown in chapter four. The
algorithm can also be tried on the real river to determine t@W it works, which is planned for

the future irrigation season.

5.2 Three New Learning Platforms Were Created

In addition to formulating a decision architecture we haneated learning platforms in three prob-
lem areas: portfolio management, business intelligemuk aatomated water management. These

learning platforms are good platforms to teach decisiooraation to students for several reasons.
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All of the platforms are non-traditional applications féugents to study decision automation. The
problems addressed by each platform are easy to undersgastddents of all diciplines. Portfo-
lio optimization and business intelligence do not requikesive mathematical and engineering
prerequisites, so they can be taught early in the educadtwoeess. This allows students an op-
portunity to decide if they want to pursue education in thiglfie

For the portfolio management platform we created an in dégtbrial showing how a
student could use the platform to learn about algorithmaigien processes. We showed examples
of how students were naturally led to consider the four moid of decision, learning, model
reduction, and verification, and consider the interactlmtsveen them to address important issues
currently being researched in the field. We also showed hoglesits could be introduced to some
of the important results in portfolio optimization by usitige portfolio optimization platform.

For business intelligence we developed a demand foreggsitatform that uses live BYU
Bookstore sales data to aid students in developing demaackisting algorithms and validate them
on real products. Students are able to create their demaedafsting algorithms in matlab and
then upload them to the database which automatically aduds th the website. A web interface
allows any user to select any product and see the actualaates with the predicted sales of any
algorithm.

For automated water management we created an algorithroisiale process using our
decision architecture. We modeled the river, designed &idecalgorithm, or controller, and
validated the results carefully to make sure that it wouldknas designed. Because of the model
selected, model reduction was not necessary. We then inepleah this controller design in a
modular way so that the infrastructure for controlling tregegcan serve as a platform for other
controller designs. We designed into the platform seveatdty features that protect the river
system against software error to help ensure that the ¢@mnecunt of water is delivered.

Future work can proceed in several different directionac&ieach of these problem areas
are areas of current research, work can be done to develapvetgsolutions to each problem.

This could include developing higher fidelity models andioproved decision solutions for port-
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folio optimization, business intelligence, and automateder management. Work can also be ex-
panded on each of the four problems of the decision architecBetter algorithms are needed for
learning, decision making, model reduction, and verifaatiFinally, future work can be directed
at the interaction between these different problems, asigdé®d in section 2.3.2. It is important

to find ways to improve how these problems work together, édybetter algorithmic decision

processes.
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